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Abstract 

 

We model the interaction between buy-side algorithmic traders (BATs) and high-frequency traders 

(HFTs). When the minimum price variation (tick size) is small, BATs dominate liquidity provision 

by establishing price priority over HFTs in the limit order book (LOB), because providing liquidity 

is less costly than demanding liquidity from HFTs. A large tick size, however, constrains price 

competition and encourages HFTs to provide liquidity by establishing time priority. An increase 

in adverse selection risk raises the unconstrained bid-ask spread, reduces tick size constraints, and 

discourages HFTs’ liquidity provision. An increase in tick size increases transaction costs and 

harms liquidity demanders, but it does not benefit liquidity providers because the costs of speed 

investments dissipate the rents resulting from the tick size. We predict that mini-flash crashes are 

more likely to occur for stocks with a smaller tick size and higher adverse selection risk. We 

suggest that the literature should not use the message-to-trade ratio as a cross-sectional proxy for 

HFTs’ liquidity provision because stocks with more liquidity provided by HFTs have a lower 

message-to-trade ratio.  
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To minimize their transaction costs, buy-side institutions, such as mutual funds and pension funds, 

extensively use computer algorithms to execute their trades (Frazzini, Israel, and Moskowitz 2014; 

O’Hara 2015). These buy-side algorithmic traders (BATs) differ from high-frequency traders 

(HFTs) in two fundamental ways (Hasbrouck and Saar 2013; Jones 2013; O’Hara 2015). First, 

BATs may provide liquidity, but their goal is to minimize transaction costs of portfolio rebalancing 

rather than to profit from the bid-ask spread; second, BATs are faster than humans, but are slower 

than HFTs (O’Hara 2015). Although buy-side institutions are major players in financial markets 

in the United States, their trading algorithms do not have an independent identity in existing models. 

The model we build in this paper bridges the gap between the economic reality and the theoretical 

literature by considering three types of traders: HFTs, BATs, and non-algorithmic (non-algo) 

traders. We use the model to address three questions: 1) Who provides liquidity and who demands 

liquidity, and when? 2) What drives speed competition? and 3) Does speed competition in the limit 

order book (LOB) improve liquidity and social welfare?  

 In our model, HFTs and two types of non-HFTs (BATs and non-algo traders) trade a 

security in a dynamic LOB. A liquidity provider in the LOB submits limit orders (offers to buy or 

sell a stock at a specified price and quantity), and a liquidity demander accepts a limit order using 

a market order. Limit order execution follows the price-time priority rule. Limit buy orders with 

higher price or limit sell orders with lower price are executed before those at less aggressive prices; 

for limit orders queuing at the same price, the time priority rule gives precedence for the order 

arriving first. HFTs have no private value to trade, but simply provide or demand liquidity when 

its expected profit is above 0. Non-HFTs, who arrive at the market through a compound Poisson 

process, have inelastic demand to buy or sell one unit of a security. Some of the non-HFTs are 

BATs, who can choose to provide or demand liquidity to minimize transaction costs, and the rest 
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are non-algo traders, who only demand liquidity. 

 In the model, two exogenous variables, adverse selection risk and tick size, determine who 

provides liquidity. The fundamental value of a security is public information in the model, but 

continuous time trading generates adverse selection risk for liquidity providers (Budish, Cramton, 

and Shim (2015; BCS hereafter). Even if liquidity providers cancel stale quotes immediately after 

the value jump, orders to snipe the stale quotes may arrive before their cancellation.  Because non-

HFTs trade for liquidity reasons and value jump leads to adverse selection of stale quotes, we use 

the arrival rate of non-HFTs relative to the intensity of value jumps to measure adverse selection 

risk. 4 If price is continuous, the adverse selection risk dictates the break-even bid-ask spread. The 

U.S. Securities and Exchange Commission’s (SEC’s) Rule 612, however, impose discrete tick size 

(minimum price variation), which prevents the bid-ask spread from reaching its competitive level.5 

Tick size and the time priority rule then drive a queuing channel of speed competition in 

liquidity supply. Tick size creates rents for liquidity provision, the rents generate the queue of 

liquidity providers, and the rents in the queue are allocated following the time priority rule. We 

predict that HFTs are the dominate liquidity providers when tick size is large, because a large tick 

size constrains price competition. In addition, a decrease in adverse selection risk reduces the 

break-even spread relative to the tick size, which also constrains price competition and incentivizes 

speed competition. 

As a small tick size or a high adverse selection risk drives HFTs’ break-even bid-ask spread 

above one tick, BATs no longer demand liquidity from HFTs. One way to reduce transaction costs 

                                                           
4 In this paper, adverse selection risk refers to the degree of adverse selection for the whole market. Each trader’s 
adverse selection cost also depends on her execution priority and strategies of other traders.   
5 As tick size is one cent for all stocks valued at $1.00 or above, the relative tick sizes for low-priced stocks are larger 
than those for high-priced stocks. Consequently, the comparative statics with respect to tick size explains the 
differences in the trading environments for low-priced and high-priced stocks. 
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is to provide liquidity to HFTs. Without loss of generality, consider BATs’ decision to buy and 

HFTs’ decision to sell. HFTs incur adverse selection costs when they use sell limit orders, but not 

when they accept buy limit orders from BATs. Therefore, BATs can submit a limit buy order with 

a price slightly below HFTs’ ask price (limit price to sell) and immediately prompts HFTs to 

submit market orders to sell. This type of limit order, which we call a “flash” limit order, strictly 

dominates market orders, because flash limit order is also immediately executed but at a lower 

cost.  

In the equilibrium where BATs use flash limit orders, tick size creates rents for demanding 

liquidity, because it prevents BATs from submitting limit orders with the exact price that prompts 

HFTs to demand liquidity. BATs have to offer limit orders with more aggressive prices, and the 

difference between BATs’ quoted prices and HFTs’ valuation generates the race for HFTs to 

demand liquidity. Under certain parameters, BATs can further reduce transaction costs by 

providing liquidity to non-HFTs. This undercutting strategy for limit orders works to establish 

price priority over HFTs, yet is not so aggressive as to prompt HFTs to take liquidity.  

 Existing literature on speed competition focuses on the role of information. On the one 

hand, speed can reduce adverse selection costs for liquidity providers and improve liquidity; on 

the other hand, speed can allow HFTs to adversely select other traders, which has a detrimental 

effect on liquidity [see Jones (2013), Biais and Foucault (2014), and Menkveld (2016) for surveys]. 

We incorporate these two traditional speed competition in our model, but the main drivers of the 

model are two types of speed competitions that relate not to information but to tick size.  By 

identifying liquidity supply and demand unrelated to information, we can reconcile a number of 

contradictions between existing channels of speed competition and empirical results.   

 Carrion (2013), Hoffmann (2014) and Brogaard et al. (2015) show that speed reduces HFTs’ 
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intermediation costs, particularly adverse selection costs. The reduced costs imply that HFTs 

should quote a tighter bid-ask spread than non-HFTs, should have a competitive advantage in 

providing liquidity for stocks with higher adverse selection risk, and should dominate liquidity 

provision when tick size is small, because the constraints to offer better prices is less binding. Yet 

Brogaard et al. (2015) find that slow traders quote a tighter bid-ask spread than fast traders, and 

Yao and Ye (2016) find that a reduction in tick size and an increase in adverse selection risk 

reduces HFTs’ fraction of liquidity provision. Our model helps to reconcile these contradictions. 

Slow traders have higher incentives to quote a tighter spread because they are less likely to 

establish time priority over HFTs; when tick size is small or adverse selection risk is high, non-

HFTs are able to establish price priority over HFTs, because the break-even bid-ask spread is large 

relative to tick size; a large tick size or low adverse selection risk constrains price competition and 

increases HFTs’ liquidity provision through time priority.  

 Yao and Ye (2016) find that the message-to-trade ratio, a widely-used proxy for HFTs’ 

liquidity provision (Biais and Foucault 2014), is negatively correlated with the true measure in 

cross-section. Our model rationalizes this negative correlation. HFTs dominate liquidity provision 

for stocks with larger tick sizes, but they also have less incentive to cancel orders, which results in 

a loss of their queue positions. A smaller tick size allows BATs to establish price priority and 

reduces HFTs’ liquidity provision, but cancellations increase because price competition occurs at 

a finer grid. This theoretical intuition, along with the empirical evidence in Yao and Ye (2016), 

suggests that the message-to-trade ratio should not be used as a cross-sectional proxy for HFT 

activities.6 

Our model provides an interpretation for mini-flash crashes, defined as sharp price 

                                                           
6 Message-to-trade ratio can still be a good time series proxy for HFTs’ activity (Angel, Harris, and Spatt 2015; 
Hendershott, Jones, and Menkveld 2011; Boehmer, Fong, and Wu 2015).  
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movements in one direction followed by quick reversion (Biais and Foucault 2014), and is 

predictive of their cross-sectional and time series variations. In cross-section, mini-flash crashes 

are more likely to occur for stocks with smaller tick size or higher adverse selection risk. HFTs 

have fewer liquidity demanders for these stocks, because BATs no longer demand liquidity from 

HFTs, and because non-algo traders’ market orders may execute first against BATs’ limit orders. 

HFTs’ limit orders then face lower execution probability and higher adverse selection costs, 

forcing HFTs to quote wide bid-ask spreads (stub quotes) to protect themselves from sniping. Yet 

BATs provide liquidity only as the need arises to trade. It is then possible for incoming market 

orders to hit HFTs’ stub quotes, which causes a mini-flash crash. In time series, we find that a 

downward (upward) flash crash is more likely to occur immediately after a downward (upward) 

price jump, because such jumps can snipe all BATs’ limit orders on the bid (ask) side and increase 

the probability for market orders to hit stub quotes before BATs refill the LOB.  

Our model extends BCS along two dimensions. BCS considers continuous prices, while 

we consider discrete prices to reflect the tick size regulation. We find that an increase in tick size 

raises transaction costs for liquidity demanders, but does not benefit liquidity providers as speed 

investment dissipates all the rents created by tick size. Along with Chao, Yao, and Ye (2016) and 

Yao and Ye (2016), we question the rationale to increase the tick size to five cents, proposed by 

the 2012 U.S. Jumpstart Our Business Startups Act (the JOBS Act). Proponents of increasing the 

tick size argue that a larger tick size increases liquidity, discourages HFTs, increases market-

making profits, supports sell-side equity research and, eventually, increases the number of initial 

public offerings (IPOs) (Weild, Kim, and Newport 2012). Our results show that an increase in the 

tick size reduces liquidity, encourages HFTs, and allocates resources to latency reduction. 

In BCS, non-HFTs only demand liquidity, but in our model we allow a fraction of non-
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HFTs to choose between demanding and supplying liquidity. By taking the initial step to model 

sophisticated non-HFTs, we develop new predictions and perceptions. For example, liquidity 

demanding from HFTs generally has a negative connotation, because liquidity demand from HFTs 

usually adverse selects liquidity suppliers (BCS; Foucault, Kozhan, and Tham Forthcoming; 

Menkveld and Zoican Forthcoming). In our model, BATs can use aggressive limit orders to prompt 

HFTs to demand liquidity, which involves no adverse selection and reduces BATs’ transaction 

costs. This may be one reason for why Latza, Marsh, and Payne (2014) find that limit orders 

executed within 50 milliseconds after their submission incur no adverse selection costs.  

This article is organized as follows. In Section 1, we describe the model. In Section 2, we 

present the benchmark model with a large and binding tick size. In Section 3, we provide an 

overview of equilibrium types under a small tick size. In Section 4, we analyze the flash 

equilibrium and the undercutting equilibrium. In Section 5, we offer a theoretical interpretation of 

flash crashes and predict their occurrence in cross-section and time series. In Section 6, we 

summarize the empirical predictions and policy implications of this paper. We conclude the paper 

in Section 7. All proofs are presented in the Appendix.  

 

1. Model 

In our model, the stock exchange operates as a continuous LOB. Traders can choose to be 

liquidity providers by submitting limit orders that specify a price, a quantity, and the direction of 

trade (buy or sell), or they can choose to be liquidity demanders and accept the conditions of the 

existing limit orders. Execution precedence for liquidity suppliers follows the price-time priority 

rule. Limit orders with higher buy or lower sell prices execute before less aggressive limit orders. 

For limit orders queuing at the same price, orders arriving earlier execute before orders arriving 
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later. The LOB contains all outstanding limit orders. Outstanding orders to buy are called “bids” 

and outstanding orders to sell are called “asks.” The highest bid and lowest ask are called the “best 

bid and ask (offer)” (BBO), and the difference between them is the bid-ask spread. 

Our model has one security, 𝑥𝑥 , whose fundamental value, 𝑣𝑣𝑡𝑡 , evolves as a compound 

Poisson jump process with arrival rate 𝜆𝜆𝐽𝐽. 𝑣𝑣𝑡𝑡 starts from 0, and changes by a size of 𝑑𝑑 or –𝑑𝑑 in 

each jump with equal probability. To simply the model, we assume that 𝑣𝑣𝑡𝑡 is common knowledge. 

Even so, liquidity providers are still subjected to adverse selection risk when they fail to update 

stale quotes after value jumps. All traders observe the common value jump with a small latency, 7 

but can choose to reduce the latency to 0 by investing in a speed technology with cost 𝑐𝑐𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 per 

unit of time. 

Our model includes HFTs and two types of non-HFTs: BATs and non-algo traders. HFTs 

place no private value on trading. They buy 𝑥𝑥 when its price is below 𝑣𝑣𝑡𝑡, or sell 𝑥𝑥 when its price 

is above 𝑣𝑣𝑡𝑡. One such profit opportunity occurs after the value jump, when HFTs can snipe the 

stale quotes. HFTs can also choose to be liquidity providers to profit from the bid-ask spread. Each 

non-HFT has to buy or sell one unit of 𝑥𝑥, each with probability 1
2
. The speed choices of HFTs and 

non-HFTs follow directly with our assumption on their trading motivations. HFTs need to invest 

in speed technology because they constantly monitor the market for opportunities to be the first to 

provide or demand liquidity, and non-HFTs do not invest in speed technology because they only 

arrive at the market once.  

Our model has two major extensions on BCS. First, non-HFTs in the BCS model submit 

only market orders. In our model, we allow a proportion 𝛽𝛽 of non-HFTs, BATs, to choose between 

limit and market orders to minimize transaction costs. The rest of the non-HFTs, non-algo traders, 

                                                           
7 By small, we mean that no additional events, such as a trader arrival or a value jump, take place during the delay.  
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use only market orders. Second, BCS assumes continuous pricing in their model, whereas we 

consider discrete pricing grids. The benchmark pricing grid in Section 2 �…− 3𝑑𝑑
2

,−𝑑𝑑
2

, 𝑑𝑑
2

, 3𝑑𝑑
2

… � 

has a tick size of  𝛥𝛥0 = 𝑑𝑑. This choice ensures that 𝑣𝑣𝑡𝑡 is always at the midpoint of two price levels 

at any time. In Sections 3-5, we reduce the tick size to 𝛥𝛥1 = 𝑑𝑑
3
, which creates additional price levels, 

such as 𝑑𝑑
6
 and−𝑑𝑑

6
. Figure 1 shows the coarse and fine pricing grids. 

Following the dynamic LOB literature (e.g., Goettler, Parlour, and Rajan 2005, 2009; Rosu 

2009; Colliard and Foucault 2012), we examine the Markov perfect equilibrium, in which traders’ 

actions condition only on state variables and events at 𝑡𝑡 . LOB is a natural state variable and 

represents the history of the play (Goettler, Parlour, and Rajan 2005). We assume that HFTs 

instantaneously build up the equilibrium LOB after any event. Under this simplification, six types 

of events trigger the transition of the LOB across states: 

⎩
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎧

  

1
2
𝛽𝛽𝛽𝛽𝐼𝐼  BAT sells (BS)

1
2
𝛽𝛽𝛽𝛽𝐼𝐼 BAT buys (BB)

1
2

(1 − 𝛽𝛽)𝜆𝜆𝐼𝐼 Non-algo sells (NS)
1
2

(1 − 𝛽𝛽)𝜆𝜆𝐼𝐼 Non-algo buys (NB)
1
2
𝜆𝜆𝐽𝐽 Price jumps up (UJ)

1
2
𝜆𝜆𝐽𝐽 Price jumps down (DJ).

                  (1) 

 

To reduce the number of states, we make a technical assumption that BATs never queue 

after existing limit orders at the same price. We can relax the one-share restriction by assuming 

that BATs can queue until the 𝑛𝑛𝑡𝑡ℎ  position, but such an extension only increases the number of 

LOB states to (1 + 𝑛𝑛)2 without conveying new intuition.8 This assumption can be justified by a 

                                                           
8 Each side of the LOB can have zero to 𝑛𝑛 shares. There are (1 + 𝑛𝑛)2 possible states for each side of the LOB. 
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delay cost for BATs. Non-HFTs in the BCS model never use limit orders, which can be justified 

by an infinitely large delay cost (Menkveld and Zoican Forthcoming). Our extension effectively 

reduce the delay cost to allow BATs to submit limit orders. We do not include exogenous delay 

cost as a parameter because it would dramatically complicate the proof of the model. In addition, 

in Section 4 we show that the exact size of the delay cost hardly plays any role for BATs’ choice 

between limit order and market order. The other justification for assumption is BATs’ trading 

motivation and speed disadvantage. BATs do not consistently monitor the market for opportunities 

to provide liquidity; even if they do, they are slower than HFTs to submit limit orders. Therefore, 

BATs cannot establish time priority at the same price as HFTs. An order with less time priority 

has lower probability of execution and higher probability of being sniped, both of which reduces 

BATs’ incentives to queue. We assume that BATs never queue to reflect this intuition in a 

parsimonious way.  

 

2. Benchmark: Binding at One Tick under a Large Tick Size 

Our analysis starts from ∆0 = 𝑑𝑑. HFTs can choose to be liquidity providers, who profit 

from the bid-ask spread. The outside option for liquidity providers is to be stale-quote snipers, 

who profit by taking liquidity from stale quotes after a value jump. In BCS, the equilibrium bid-

ask spread equalizes the expected profits from these two strategies, which are both zero after speed 

investment. Lemma 1 shows that this break-even bid-ask spread is smaller than the tick size when 

adverse selection risk is low. 

 

Lemma 1 (Binding Tick Size). When  ∆0 = 𝑑𝑑 and  𝜆𝜆𝐼𝐼
𝜆𝜆𝐽𝐽

> 1, the profit from providing the first share 

at the ask price of 𝑎𝑎𝑡𝑡∗ = 𝑣𝑣𝑡𝑡 + 𝑑𝑑
2
 and the bid price of  𝑏𝑏𝑡𝑡∗ = 𝑣𝑣𝑡𝑡 −

𝑑𝑑
2
 is higher than the profit from stale-
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quote sniping.  

 

 Because non-HFTs trade for liquidity reasons but value jumps lead to adverse selection 

risk for stale quotes,  𝜆𝜆𝐼𝐼
𝜆𝜆𝐽𝐽

  measures adverse selection risk in our model. As in BCS and Menkveld 

and Zoican (Forthcoming), this adverse selection risk comes from the speed to respond to public 

information but not from exogenous information asymmetry (e.g., Glosten and Milgrom 1985; 

Kyle 1985). As the arrival rate of non-HFTs increases or the intensity of value jumps decreases, 

the adverse selection risk decreases and so does the break-even bid-ask spread. The break-even 

bid-ask spread drops below one tick when 𝜆𝜆𝐼𝐼
𝜆𝜆𝐽𝐽

> 1, making liquidity provision for the first share 

strictly more profitable than stale-quote sniping.9 The rents for liquidity provision then trigger the 

race to win time priority in the queue. BATs do not have a speed advantage to win the race to 

provide liquidity, they demand liquidity as non-algo traders do. As a result, Lemma 1 does not 

depend on 𝛽𝛽.  

 Under a binding tick size, price competition cannot lead to economic equilibrium. It is the 

queue that balances the rents across traders and restores the economic equilibrium. Next, we derive 

the equilibrium queue length for the ask side of the LOB, and the bid side follows symmetrically. 

We evaluate HFTs’ value of liquidity provision and stale-quote sniping for each queue 

position, though we allow an HFT to provide liquidity at multiple queue positions and to snipe 

shares in any other positions where the HFT is not a liquidity provider. We denote the value of 

liquidity provision for the 𝑄𝑄𝑡𝑡ℎ  share as 𝐿𝐿𝐿𝐿(𝑄𝑄). A market sell order does not affect 𝐿𝐿𝐿𝐿(𝑄𝑄) on the 

                                                           
9 Throughout this paper, we consider the case in which 𝜆𝜆𝐼𝐼

𝜆𝜆𝐽𝐽
> 1 for expositional simplicity. When 𝜆𝜆𝐼𝐼

𝜆𝜆𝐽𝐽
≤ 1, ∆0  is no 

longer binding, and the equilibrium structure is similar to that in Sections 3-5, where we reduce the tick size to ∆1= 𝑑𝑑
3
. 
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ask side, because HFTs immediately restore the previous state of the LOB by refilling the bid 

side.10 A market buy order moves the queue forward by one unit, thereby changing the value to 

𝐿𝐿𝐿𝐿(𝑄𝑄 − 1). A limit order execution leads to a profit of  𝑑𝑑
2
 to the liquidity provider, 𝐿𝐿𝐿𝐿(0) = 𝑑𝑑

2
. 

When 𝑣𝑣𝑡𝑡  jumps upward, the liquidity providing HFT of the 𝑄𝑄𝑡𝑡ℎ share races to cancel the stale 

quote, whereas the other 𝑁𝑁 − 1 HFTs (with 𝑁𝑁 is determined in equilibrium) race to snipe the stale 

quote. The loss from being sniped is 𝑑𝑑
2
, and the probability of being sniped is 𝑁𝑁−1

𝑁𝑁
. When 𝑣𝑣𝑡𝑡   jumps 

downward, the liquidity provider cancels his order and joins the race to provide liquidity at a new 

BBO.11 𝐿𝐿𝐿𝐿(𝑄𝑄) then becomes 0. Equation (2) presents 𝐿𝐿𝐿𝐿(𝑄𝑄) in recursive form and Lemma 2 

presents the solution for equation (2).  

𝐿𝐿𝑃𝑃(𝑄𝑄) =
1
2 𝜆𝜆𝐼𝐼
𝜆𝜆𝐼𝐼+𝜆𝜆𝐽𝐽

𝐿𝐿𝐿𝐿(𝑄𝑄) +
1
2 𝜆𝜆𝐼𝐼
𝜆𝜆𝐼𝐼+𝜆𝜆𝐽𝐽

𝐿𝐿𝐿𝐿(𝑄𝑄 − 1) − 𝑁𝑁−1
𝑁𝑁

1
2 𝜆𝜆𝐽𝐽
𝜆𝜆𝐼𝐼+𝜆𝜆𝐽𝐽

× 𝑑𝑑
2

+
1
2 𝜆𝜆𝐽𝐽
𝜆𝜆𝐼𝐼+𝜆𝜆𝐽𝐽

× 0.     (2) 

  

Lemma 2 (Value of Liquidity Provision). The value of liquidity provision for the 𝑄𝑄𝑡𝑡ℎ position 

is: 

𝐿𝐿𝐿𝐿(𝑄𝑄) = � 𝜆𝜆𝐼𝐼
𝜆𝜆𝐼𝐼+2𝜆𝜆𝐽𝐽

�
𝑄𝑄 𝑑𝑑
2
− 𝑁𝑁−1

𝑁𝑁
1
2
�1 − � 𝜆𝜆𝐼𝐼

𝜆𝜆𝐼𝐼+2𝜆𝜆𝐽𝐽
�
𝑄𝑄
� 𝑑𝑑
2

.   (3) 

𝐿𝐿𝐿𝐿(𝑄𝑄) decreases in 𝑄𝑄. 

 

Intuitively, Lemma 2 reflects the conditional probability of value-change events for 𝐿𝐿𝐿𝐿(𝑄𝑄) 

and their payoffs. Since 𝐿𝐿𝐿𝐿(𝑄𝑄)  stays the same after a market sell order, the conditional 

probabilities of value-changing events are  𝜆𝜆𝐼𝐼 
𝜆𝜆𝐼𝐼+2𝜆𝜆𝐽𝐽

 for a market buy, 𝜆𝜆𝐽𝐽
𝜆𝜆𝐼𝐼+2𝜆𝜆𝐽𝐽

 for an upward value 

                                                           
10 This result no longer holds in Section 4, when the tick size is not binding at one tick.  
11 We assume that the HFT liquidity provider cancels the limit order to avoid the complexity of tracking infinite 
many price levels in the LOB.  
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jump, and 𝜆𝜆𝐽𝐽
𝜆𝜆𝐼𝐼+2𝜆𝜆𝐽𝐽

 for a downward value jump. The 𝑄𝑄𝑡𝑡ℎ share executes when 𝑄𝑄 non-HFTs arrive in 

a row to buy, which has a probability of � 𝜆𝜆𝐼𝐼
𝜆𝜆𝐼𝐼+2𝜆𝜆𝐽𝐽

�
𝑄𝑄

, and the revenue conditional on execution is 𝑑𝑑
2
. 

Their product, the first term in equation (3), reflects the expected revenue for liquidity providers. 

The 𝑄𝑄𝑡𝑡ℎ share on the ask side fails to execute with non-HFTs when an upward or downward value 

jump occurs, each with probability  1
2

[1 − � 𝜆𝜆𝐼𝐼
𝜆𝜆𝐼𝐼+2𝜆𝜆𝐽𝐽

�
𝑄𝑄

]. After a value jump, the liquidity provider 

has a probability of 1
𝑁𝑁

 to cancel the stale quote, but failing to cancel the stale quote before sniping 

leads to a loss of 𝑑𝑑
2
. The expected loss is 𝑁𝑁−1

𝑁𝑁
1
2

[1 − � 𝜆𝜆𝐼𝐼
𝜆𝜆𝐼𝐼+2𝜆𝜆𝐽𝐽

�
𝑄𝑄

] 𝑑𝑑
2
, the second term in equation (3). 

A downward value jump before the order being snipped or executed leads to a zero payoff for the 

liquidity provider. 𝐿𝐿𝐿𝐿(𝑄𝑄)  decreases in  𝑄𝑄 , because an increase in a queue position reduces 

execution probability and increases the cost of being sniped.  

With a probability of 1
2

[1 − � 𝜆𝜆𝐼𝐼
𝜆𝜆𝐼𝐼+2𝜆𝜆𝐽𝐽

�
𝑄𝑄

], the 𝑄𝑄𝑡𝑡ℎ share becomes stale before it gets executed, 

and each sniper has a probability of 1
𝑁𝑁

 to profit from the stale quote. The value for each sniper of 

the 𝑄𝑄𝑡𝑡ℎ share is: 

 

𝑆𝑆𝑆𝑆(𝑄𝑄) =  1
𝑁𝑁
1
2

[1 − � 𝜆𝜆𝐼𝐼
𝜆𝜆𝐼𝐼+2𝜆𝜆𝐽𝐽

�
𝑄𝑄

] 𝑑𝑑
2

.                   (4) 

𝑆𝑆𝑆𝑆(𝑄𝑄) increases with 𝑄𝑄, because shares in a later queue position offer more opportunities for 

snipers to act.  

 HFTs race to provide liquidity for the 𝑄𝑄𝑡𝑡ℎ  position as long as 𝐿𝐿𝐿𝐿(𝑄𝑄) > 𝑆𝑆𝑆𝑆(𝑄𝑄), because 

the winner’s payoff is higher than that of the losers of the race, who can only be the snipers during 

value jumps. Equation (5) determines the equilibrium length:  
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� 𝜆𝜆𝐼𝐼
𝜆𝜆𝐼𝐼+2𝜆𝜆𝐽𝐽

�
𝑄𝑄 𝑑𝑑
2
− 1

2
[1 − � 𝜆𝜆𝐼𝐼

𝜆𝜆𝐼𝐼+2𝜆𝜆𝐽𝐽
�
𝑄𝑄

] 𝑑𝑑
2

> 0.12F

12   (5) 

The solution for equation (5) is:  

𝑄𝑄∗ = max �𝑄𝑄 ∈ ℕ+ s. t.�
𝜆𝜆𝐼𝐼

𝜆𝜆𝐼𝐼 + 2𝜆𝜆𝐽𝐽
�
𝑄𝑄 𝑑𝑑

2
−

1
2
�1 − �

𝜆𝜆𝐼𝐼
𝜆𝜆𝐼𝐼 + 2𝜆𝜆𝐽𝐽

�
𝑄𝑄

�
𝑑𝑑
2

> 0� 

= max �𝑄𝑄 ∈ ℕ+ s. t.�
𝜆𝜆𝐼𝐼

𝜆𝜆𝐼𝐼 + 2𝜆𝜆𝐽𝐽
�
𝑄𝑄

>
1
3
� 

= �log
� 𝜆𝜆𝐼𝐼
𝜆𝜆𝐼𝐼+2𝜆𝜆𝐽𝐽

�
1
3
�.                                                                    (6) 

 

Figure 2 shows the comparative statics for equilibrium queue length. The queue length at 

BBO decreases with 𝜆𝜆𝐼𝐼
𝜆𝜆𝐽𝐽

, which indicates that, for stocks with a bid-ask spread binding at one tick, 

the depth at the BBO may serve as a proxy for adverse selection risk. Traditionally, bid-ask spreads 

serve as the proxy for adverse selection risk (Glosten and Milgrom 1985; Stoll 2000). Yet Yao and 

Ye (2016) find that bid-ask spread is exactly one-tick wide 41% of time for their stratified sample 

of Russell 3000 stocks in 2010. Depth at the BBO then serves as an ideal proxy to differentiate the 

level of adverse selection for these stocks.13  

To derive  𝑁𝑁, note that HFTs’ total rents come from the bid-ask spread paid by non-HFTs, 

because sniping only redistributes the rents among HFTs. Ex ante, each HFT obtains 1
𝑁𝑁

 of the rents 

                                                           
12 Liquidity providers in traditional limit order models continue to add limit orders until their marginal profits become 
zero (Seppi 1997; Parlour and Seppi 2003, 2008). HFTs in our model stop increasing the depth as long as 
𝑆𝑆𝑆𝑆(𝑄𝑄∗ + 1) > 𝐿𝐿𝐿𝐿(𝑄𝑄∗ + 1) , even if the marginal profit for the (𝑄𝑄∗ + 1)𝑡𝑡ℎ  unit is greater than zero. This is a 
consequence of HFTs’ option to be a sniper. Because sniping only reallocates rents among HFTs, the total rents for 
HFTs come only from non-HFTs. Because the liquidity provider for the (𝑄𝑄∗ + 1)𝑡𝑡ℎ position earns below average rents, 
HFTs find it optimal to leave the (𝑄𝑄∗ + 1)𝑡𝑡ℎ position empty until a market order moves the queue forward. Each HFT 
expects average rents in the race for the 𝑄𝑄∗𝑡𝑡ℎ  position, and the winner obtains above-average rents 
 �𝐿𝐿𝐿𝐿(𝑄𝑄∗) > 𝑆𝑆𝑆𝑆(𝑄𝑄∗)�. In summary, the depth in our model is different from that in traditional LOB models because 
we allow liquidity providers to demand liquidity.  
13 Certainly, the comparison also needs to control for price, because stocks with the same nominal bid-ask spread 
may have a different proportional bid-ask spread. 
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per unit of time. New HFTs continue to enter the market until:  

𝜆𝜆𝐼𝐼
𝑑𝑑
2
− 𝑁𝑁𝑐𝑐𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 ≤ 0.                                               (7) 

In Proposition 1, we summarize the equilibrium under a large binding tick size. 

 

Proposition 1. (Large Binding Tick Size): When ∆0= 𝑑𝑑 and  𝜆𝜆𝐼𝐼
𝜆𝜆𝐽𝐽

> 1, 𝑁𝑁∗  HFTs jointly provide 

𝑄𝑄∗ units of sell limit orders at 𝑎𝑎𝑡𝑡∗ = 𝑣𝑣𝑡𝑡 + 𝑑𝑑
2
 and 𝑄𝑄∗ units of buy limit orders at 𝑏𝑏𝑡𝑡∗ = 𝑣𝑣𝑡𝑡 −

𝑑𝑑
2
, where:  

𝑄𝑄∗ = �log
� 𝜆𝜆𝐼𝐼
𝜆𝜆𝐼𝐼+2𝜆𝜆𝐽𝐽

�
1
3
�, and 

𝑁𝑁∗ = max �𝑁𝑁 ∈ ℕ+ s. t. 𝜆𝜆𝐼𝐼
𝑑𝑑
2
− 𝑁𝑁𝑐𝑐𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 > 0�.                     (8) 

 
BATs and non-algo traders demand liquidity when there is a large binding tick size. 

 
In BCS, the depth at the BBO is one share, because the first share has a competitive price. 

The second share at that price, which faces lower execution probability and higher adverse 

selection costs, is not profitable. The discrete tick size in our model raises the profit of liquidity 

provision above the profit of stale-quote sniping for the first share, and generates the queue for 

liquidity provision.  

In BCS, the number of HFTs is determined by 𝜆𝜆𝐼𝐼
𝑠𝑠∗

2
− 𝑁𝑁𝑐𝑐𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 = 0, where 𝑠𝑠∗ is the break-

even bid-ask spread. In our model, 𝑁𝑁 is determined by 𝜆𝜆𝐼𝐼
𝑑𝑑
2
− 𝑁𝑁𝑐𝑐𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 > 0. When tick size is 

binding, 𝑑𝑑 > 𝑠𝑠∗, so tick size leads to more entries of HFTs. Taken together, our model contributes 

to the literature by identifying a queuing channel of speed competition, in which HFTs race for top 

queue positions to capture the rents created by tick size.  
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3. Equilibrium Types under a Small Tick Size 

Starting from this section, we show that a reduction in tick size to 𝑑𝑑
3

 prompts BATs to become 

liquidity providers by establishing price priority over HFTs, except when the adverse selection risk 

is very low. Corollary 1 shows that a small tick size of 𝑑𝑑
3
 is still binding when 𝜆𝜆𝐼𝐼

𝜆𝜆𝐽𝐽
> 5.  

 

Corollary 1. (Small Binding Tick Size) If ∆1= 𝑑𝑑
3
 and 𝜆𝜆𝐼𝐼

𝜆𝜆𝐽𝐽
> 5, the bid-ask spread equals the tick 

size. 𝑁𝑁𝑠𝑠∗ HFTs jointly post 𝑄𝑄𝑠𝑠∗ units of sell limit orders at 𝑎𝑎𝑠𝑠,𝑡𝑡
∗ = 𝑣𝑣𝑡𝑡 + 𝑑𝑑

6
 and 𝑄𝑄𝑠𝑠∗ units of buy limit 

orders at 𝑏𝑏𝑠𝑠,𝑡𝑡
∗ = 𝑣𝑣𝑡𝑡 −

𝑑𝑑
6
, where: 

𝑄𝑄𝑠𝑠∗ = max �𝑄𝑄 ∈ ℕ+ s. t.�
𝜆𝜆𝐼𝐼

𝜆𝜆𝐼𝐼 + 2𝜆𝜆𝐽𝐽
�
𝑄𝑄 𝑑𝑑

6
−

1
2
�1 − �

𝜆𝜆𝐼𝐼
𝜆𝜆𝐼𝐼 + 2𝜆𝜆𝐽𝐽

�
𝑄𝑄

�  
5𝑑𝑑
6

> 0 � 

= �log
� 𝜆𝜆𝐼𝐼
𝜆𝜆𝐼𝐼+2𝜆𝜆𝐽𝐽

�
5
7
� < 𝑄𝑄∗, and                                              (9) 

𝑁𝑁𝑠𝑠∗ = max �𝑁𝑁 ∈ ℕ+ s. t. 𝜆𝜆𝐼𝐼
𝑑𝑑
6
− 𝑁𝑁𝑐𝑐𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 > 0� < 𝑁𝑁∗.      (10) 

 

 Compared with Proposition 1, a small tick size reduces revenue from liquidity provision 

from 𝑑𝑑
2
 to 𝑑𝑑

6
, increases the cost of being sniped from 𝑑𝑑

2
 to 5𝑑𝑑

6
, and reduces the queue length from 𝑄𝑄∗ 

to 𝑄𝑄𝑠𝑠∗. Figure 2 shows that 𝑄𝑄𝑠𝑠∗ is approximately 1
3
 of 𝑄𝑄∗. A small tick size also discourages the entry 

of HFTs. 𝑁𝑁𝑠𝑠∗ is approximately 1
3
 of 𝑁𝑁∗, because HFTs’ expected profit per unit of time decreases 

from 𝜆𝜆𝐼𝐼
𝑑𝑑
2
 to 𝜆𝜆𝐼𝐼

𝑑𝑑
6
. 

When 1 < 𝜆𝜆𝐼𝐼
𝜆𝜆𝐽𝐽

< 5, the break-even bid-ask spread is larger than one tick. To profit from the 
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bid-ask spread, HFTs have to quote the following bid-ask spread:14  

⎩
⎪
⎨

⎪
⎧ 𝑑𝑑

2
 1

1−𝛽𝛽
< 𝜆𝜆𝐼𝐼

𝜆𝜆𝐽𝐽
< 5

5𝑑𝑑
6

1
5(1−𝛽𝛽)

< 𝜆𝜆𝐼𝐼
𝜆𝜆𝐽𝐽

< 1
1−𝛽𝛽

7𝑑𝑑
6

𝜆𝜆𝐼𝐼
𝜆𝜆𝐽𝐽

< 1
5(1−𝛽𝛽)

 15                       (11) 

Figure 3 shows that the bid-ask spread quoted by HFTs weakly decreases with 𝜆𝜆𝐼𝐼
𝜆𝜆𝐽𝐽

, because 

an increase in 𝜆𝜆𝐼𝐼
𝜆𝜆𝐽𝐽

 decreases adverse selection risk and the break-even bid-ask spread. The bid-ask 

spread quoted by HFTs increases weakly with the fraction of BATs, because BATs’ strategies for 

minimizing transaction costs reduce HFTs’ expected profit from liquidity provision. Interestingly, 

when the adverse section risk or the fraction of BATs is high, HFTs effectively cease liquidity 

provision by quoting a bid-ask spread that is wider than the size of a jump. The following sections 

elaborate the equilibrium types when tick size is not binding. 

 

Insert Figure 3 about Here 

 

4. Make-take Spread, Flash Equilibrium, and Undercutting Equilibrium 

In this section, we study the case that 1
1−𝛽𝛽

< 𝜆𝜆𝐼𝐼
𝜆𝜆𝐽𝐽

< 5, for which HFTs need to quote an ask price of 

𝑣𝑣𝑡𝑡 + 𝑑𝑑
2
 and a bid price of 𝑣𝑣𝑡𝑡 −

𝑑𝑑
2
 to profit from the spread. In Section 4.1, we explain why BATs 

always choose to provide liquidity when tick size is not binding. Section 4.2 shows how adverse 

selection risk affects BATs’ limit order prices.  

 

                                                           
14 We defer the derivation of the boundary condition for HFTs’ bid-ask spread to Sections 4-5. 
15 Another way to bypass tick size constraints is to randomize quotes immediately above and below the break-even 
bid–ask spread. In this paper, we consider only stationary HFT quotes. 
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4.1 Make-take spread 

In this subsection, we show that BATs never take liquidity from HFTs when 1
1−𝛽𝛽

< 𝜆𝜆𝐼𝐼
𝜆𝜆𝐽𝐽

< 5 . 

Without loss of generality, we consider the decision for a BAT who wants to buy, and the intuition 

is the same for a BAT who wants to sell. A BAT can choose to accept the ask price of  𝑣𝑣𝑡𝑡 + 𝑑𝑑
2
, but 

submitting a limit order to buy at 𝑣𝑣𝑡𝑡 + 𝑑𝑑
6
 is always less costly, because a buy limit order above 

fundamental value immediately prompts HFTs to submit market orders to sell. This flash limit 

order gets immediate execution like market orders, but with lower cost.  

 Flash limit orders exploit the make-take spread, a new concept we develop in this paper. A 

HFT’s limit price to sell includes the adverse selection risk. The HFT would accept a lower price 

for a market sell order, because immediate execution reduces adverse selection risk. The make-

take spread measures the price difference between the traders’ willingness to list an offer and their 

willingness to accept an offer conditional on the trade direction (e.g., sell).  

As HFTs would take liquidity for any order that crosses the midpoint, make-take spread 

happens to be half of the bid-ask spread in our model. Two intuitions, however, should hold more 

generally. First, as the limit order price of a BAT approaches that of the HFTs, it prompts HFTs to 

demand liquidity. Second, the make-take spread should nest in the bid-ask spread, which implies 

that BATs can no longer find a price level to take advantage of the make-take spread if the bid-ask 

spread is exactly one tick.  

 In most market microstructure models, traders cannot take advantage of the make-take 

spread, because liquidity suppliers cannot demand liquidity. This assumption reflects the economic 

reality at the time, when some exchanges even prohibited market makers from demanding liquidity 

(Clark-Joseph, Ye, and Zi Forthcoming). In modern electronic platforms, every trader can provide 

liquidity, and liquidity providers’ face very limited, if any restriction to demand liquidity (Clark-
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Joseph, Ye, and Zi Forthcoming). O’Hara (2015) points out that demand or supply liquidity now 

simply implies “cross the spread” or “do not cross the spread.” She finds that sophisticated non-

HFTs cross the spread only when it is absolutely necessary. The make-take spread provides one 

interpretation for why sophisticated non-HFTs seldom cross the bid-ask spread.  

 

4.2 Flash versus regular limit orders    

Although flash orders strictly dominate market orders, BATs can choose to submit limit orders 

that do not cross the midpoint. These regular limit orders do not get immediate execution but stay 

in the LOB to wait for market orders. In this subsection, we consider BATs’ choice between flash 

and regular limit orders. A flash limit order (e.g., 𝑣𝑣𝑡𝑡 + 𝑑𝑑
6
 to buy) executes immediately, but it costs 

𝑑𝑑
6
 relative to the midpoint. A regular limit order (e.g., 𝑣𝑣𝑡𝑡 −

𝑑𝑑
6
 to buy) captures a half bid-ask spread 

of 𝑑𝑑
6
 if executed against a non-HFT, but it is also subject to adverse selection risk. A higher adverse 

selection risk, therefore, increases the costs of regular limit orders and prompts BATs to submit 

flash limit orders. BATs choose flash limit orders when 𝛽𝛽 increases, because a large 𝛽𝛽 reduces the 

probability of execution before a value jump. Figure 4 shows the boundary between the flash 

equilibrium, in which BATs choose flash limit orders, and the undercutting equilibrium, in which 

BATs choose regular limit orders.  

 

Insert Figure 4 about Here 

 

In both equilibria, BATs quote a tighter spread than HFTs. This theoretical prediction is in 

the opposite direction to existing channels of speed competition, but is supported by empirical 

evidence. Conventional wisdom maintains that HFTs should quote tighter bid-ask spreads than 
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non-HFTs, because speed reduces their adverse selection cost (Jones 2013; Menkveld 2016). Yet 

Brogaard et al. (2015) and Yao and Ye (2016) find that non-HFTs quote tighter spreads than HFTs. 

We provide possible explanations based on their motivations and trading speed. BATs’ motivation 

to complete a trade allows them to submit more aggressive limit orders, as long as the limit orders 

are less costly than market orders; BATs’ speed disadvantage prevents them from achieving time 

priority in the queue and incentivizes them to undercut HFTs.16  

 

4.2.1 Flash equilibrium    

Proposition 2 characterizes the flash equilibrium in which BATs use flash limit orders.    

 

Proposition 2. (Flash Equilibrium): When ∆1= 𝑑𝑑
3
 and 1

1−𝛽𝛽
< 𝜆𝜆𝐼𝐼

𝜆𝜆𝐽𝐽
< 1+2β+�4β2+9

2−β
, the equilibrium is 

characterized as follows: 

1. BAT buyers submit limit orders at 𝑣𝑣𝑡𝑡 + 𝑑𝑑
6
 and BAT sellers submit limit orders at price 

𝑣𝑣𝑡𝑡 −
𝑑𝑑
6
. 

2. 𝑁𝑁𝑓𝑓∗ HFTs jointly provide 𝑄𝑄𝑓𝑓∗  units of sell limit orders at 𝑣𝑣𝑡𝑡 + 𝑑𝑑
2
 and 𝑄𝑄𝑓𝑓∗  units of buy limit 

orders at 𝑣𝑣𝑡𝑡 −
𝑑𝑑
2
, where: 

𝑄𝑄𝑓𝑓∗ = max �𝑄𝑄 ∈ ℕ+ s. t. � (1−𝛽𝛽)𝜆𝜆𝐼𝐼
(1−𝛽𝛽)𝜆𝜆𝐼𝐼+2𝜆𝜆𝐽𝐽

�
𝑄𝑄 𝑑𝑑
2
− 1

2
 (1 − � (1−𝛽𝛽)𝜆𝜆𝐼𝐼

(1−𝛽𝛽)𝜆𝜆𝐼𝐼+2𝜆𝜆𝐽𝐽
�
𝑄𝑄

) 𝑑𝑑
2

> 0 �  

= �log
� (1−𝛽𝛽)𝜆𝜆𝐼𝐼

(1−𝛽𝛽)𝜆𝜆𝐼𝐼+2𝜆𝜆𝐽𝐽
�
1
3
� < 𝑄𝑄∗                   (12) 

                                                           
16 We model time priority parsimoniously by assuming that BATs do not queue after existing limit orders at the same 
price, but the intuition similar if we assume that they only queue until the 𝑄𝑄𝑡𝑡ℎ as long as 𝑄𝑄 is less than the maximum 
depth offered by HFTs.  
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𝑁𝑁𝑓𝑓∗ = max �𝑁𝑁 ∈ ℕ+ s. t.𝛽𝛽𝛽𝛽𝐼𝐼
𝑑𝑑
6

+ (1 − 𝛽𝛽)𝜆𝜆𝐼𝐼
𝑑𝑑
2
− 𝑁𝑁𝑐𝑐𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 > 0� < 𝑁𝑁∗.        (13) 

3. HFTs participate in three races. (1) HFTs race to fill the queue when the depth at 𝑣𝑣𝑡𝑡 + 𝑑𝑑
2
 

or 𝑣𝑣𝑡𝑡 −
𝑑𝑑
2
 becomes less than 𝑄𝑄𝑓𝑓∗ . (2) HFTs race to take the liquidity offered by flash limit 

orders. (3) After a value jump, HFTs who provide liquidity race to cancel the stale quotes, 

whereas stale-quote snipers race to pick off the stale quotes. 

 

Proposition 2 identifies a second type of speed competition led by tick size: racing to be 

the first to take the liquidity offered by flash limit orders. If price is continuous, any limit buy price 

above fundamental value would prompt HFTs to sell. With discrete tick size, a BAT needs to place 

the buy limit order at 𝑣𝑣𝑡𝑡 + 𝑑𝑑
6
, which drives the speed race to capture the rent of 𝑑𝑑

6
 through taking 

liquidity.  

In the literature, HFTs take liquidity when they have advance information to adversely 

select other traders (BCS; Foucault, Kozhan, and Tham Forthcoming; Menkveld and Zoican 

Forthcoming). Consequently, HFTs’ liquidity demand often has negative connotations. Our model 

shows that HFTs can take liquidity without adversely selecting other traders. Instead, the 

transaction cost is lower for BATs when HFTs take liquidity than when BATs take liquidity made 

by HFTs. Therefore, researchers and policy makers should not evaluate the welfare impact of HFTs 

simply based on liquidity provision versus liquidity demanding.  

As BATs no longer demand liquidity from HFTs, HFTs respond to the reduced liquidity 

demand and higher adverse selection cost by decreasing their depth to 𝑄𝑄𝑓𝑓∗ . The profit to take 

liquidity from BATs, 𝑑𝑑
6
, is less than the profit to provide liquidity to BATs at 𝑑𝑑

2
 when the tick size 

is ∆0. A smaller tick size, ∆1, reduces the profit for HFTs, thereby reducing the number of HFTs.  
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In flash equilibrium, the LOB only has one stable state. Next, we discuss the undercutting 

equilibrium, in which LOB transits across different states.  

 

4.2.2 Undercutting equilibrium  

In the undercutting equilibrium, BATs submit limit orders that remain in the LOB. HFTs’ 

and BATs’ decisions now depend on the state of the book (𝑖𝑖, 𝑗𝑗). Here 𝑖𝑖 represents the number of 

BATs’ limit orders on the same of the LOB, and 𝑗𝑗 stands for the number of BATs’ limit orders on 

the opposite side of the LOB. For example, for a BAT or HFT who wants to buy, 𝑖𝑖 represents the 

number of BATs’ limit orders on the bid side, and 𝑗𝑗 represents the number of BATs’ limit orders 

on the ask side.  
 

(0,0) No limit order from BATs
(1,0) A BAT limit order on the same side
(0,1) A BAT limit order on the opposite side
(1,1) BAT limit orders on both sides

 

 

HFTs’ and BATs’ strategies depends on the states of LOB and the probability of future 

events. Their actions also lead to state transitions of the LOB, which are shown in Figure 5. To 

simplify the notation, we denote the probability of events as follows. 𝑝𝑝1 ≡
1
2
∙ 𝜆𝜆𝐼𝐼𝛽𝛽
𝜆𝜆𝐼𝐼+𝜆𝜆𝐽𝐽

 denotes the 

arrival probability of a BAT buyer or seller, 𝑝𝑝2 ≡
1
2
∙ 𝜆𝜆𝐼𝐼(1−𝛽𝛽)
𝜆𝜆𝐼𝐼+𝜆𝜆𝐽𝐽

 denotes the arrival probability of a 

non-algo trader to buy or sell, and 𝑝𝑝3 ≡
1
2
∙ 𝜆𝜆𝐽𝐽
𝜆𝜆𝐼𝐼+𝜆𝜆𝐽𝐽

 denotes the probability of an upward or downward 

value jump. In Proposition 3, we summarize the undercutting equilibrium.  

 

Insert Figure 5 about Here 
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Proposition 3. (Undercutting Equilibrium): When ∆1= 𝑑𝑑
3

 and  1+2𝛽𝛽+�4𝛽𝛽
2+9

2−𝛽𝛽
< 𝜆𝜆𝐼𝐼

𝜆𝜆𝐽𝐽
< 5 , the 

equilibrium is characterized as follows: 

1. HFTs’ strategy: 

a. Spread: HFTs quote ask price at 𝑣𝑣𝑡𝑡 + 𝑑𝑑
2
 and bid price at 𝑣𝑣𝑡𝑡 −

𝑑𝑑
2
.  

b. Depth: Define  𝐷𝐷(𝑖𝑖,𝑗𝑗)(𝑄𝑄) ≡ 𝐿𝐿𝐿𝐿(𝑖𝑖,𝑗𝑗)(𝑄𝑄)− 𝑆𝑆𝑆𝑆(𝑖𝑖,𝑗𝑗)(𝑄𝑄) . The following system of 

equations determines the equilibrium depth in each state. 

i. Difference in value between the liquidity provider and the stale-queue 

sniper in each state: 

⎩
⎪⎪
⎪
⎨

⎪⎪
⎪
⎧𝐷𝐷(0,0)(𝑄𝑄) = 𝑚𝑚𝑚𝑚𝑚𝑚 {0,𝑝𝑝1𝐷𝐷(0,1)(𝑄𝑄) + 𝑝𝑝1𝐷𝐷(1,0)(𝑄𝑄)+𝑝𝑝2𝐷𝐷(0,0)(𝑄𝑄 − 1) + 𝑝𝑝2𝐷𝐷(0,0)(𝑄𝑄) + 𝑝𝑝3 �−

𝑑𝑑
2
� + 𝑝𝑝3 ∙ 0}

𝐷𝐷(1,0)(𝑄𝑄) = 𝑚𝑚𝑚𝑚𝑚𝑚 {0,𝑝𝑝1𝐷𝐷(1,1)(𝑄𝑄) + 𝑝𝑝1𝐷𝐷(1,0)(𝑄𝑄)+𝑝𝑝2𝐷𝐷0,0(𝑄𝑄) + 𝑝𝑝2𝐷𝐷(1,0)(𝑄𝑄) + 𝑝𝑝3 �−
𝑑𝑑
2
� + 𝑝𝑝3 ∙ 0}

𝐷𝐷(0,1)(𝑄𝑄) = 𝑚𝑚𝑚𝑚𝑚𝑚 �0, 𝑝𝑝1𝐷𝐷(0,1)(𝑄𝑄) + 𝑝𝑝1𝐷𝐷(1,1)(𝑄𝑄)+𝑝𝑝2𝐷𝐷(0,1)(𝑄𝑄 − 1) + 𝑝𝑝2𝐷𝐷(0,0)(𝑄𝑄) + 𝑝𝑝3 �−
𝑑𝑑
2
� + 𝑝𝑝3 ∙ 0�

𝐷𝐷(1,1)(𝑄𝑄) = 𝑚𝑚𝑚𝑚𝑚𝑚 {0, 𝑝𝑝1𝐷𝐷(0,1)(𝑄𝑄) + 𝑝𝑝1𝐷𝐷(1,0)(𝑄𝑄)+𝑝𝑝2𝐷𝐷(0,1)(𝑄𝑄) + 𝑝𝑝2𝐷𝐷(1,0)(𝑄𝑄) + 𝑝𝑝3 �−
𝑑𝑑
2
� + 𝑝𝑝3 ∙ 0}

. 

(14) 

ii. Difference in value for immediate execution: 𝐷𝐷(0,0)(0) = 𝐷𝐷(0,1)(0) = 𝑑𝑑
2
. 

iii. Equilibrium depth as a function of difference in value:  

𝑄𝑄(𝑖𝑖,𝑗𝑗) = 𝑚𝑚𝑚𝑚𝑚𝑚�𝑄𝑄𝑄𝑄𝑄𝑄�𝐷𝐷(𝑖𝑖,𝑗𝑗)(𝑄𝑄) > 0�   𝑖𝑖 = 0,1; 𝑗𝑗 = 0,1. 

c. Entry: There are 𝑁𝑁𝑢𝑢∗ < 𝑁𝑁∗ HFTs. 

2. BATs who intend to buy (sell) submit limit orders at price 𝑣𝑣𝑡𝑡 −
𝑑𝑑
6

 (𝑣𝑣𝑡𝑡 + 𝑑𝑑
6

 ) if no existing 

limit orders sit at the price level, or buy (sell) limit orders at price 𝑣𝑣𝑡𝑡 + 𝑑𝑑
6

 (𝑣𝑣𝑡𝑡 −
𝑑𝑑
6

 ) 

otherwise.  
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Even under the simplifying assumption that BATs do not queue behind existing limit orders 

at the same price, the solution for the equilibrium depth offered by HFTs is rather complex. The 

depth for each state (𝑖𝑖, 𝑗𝑗) depends on the value difference between liquidity provision and stale-

quote snipping in this state, 𝐷𝐷(𝑖𝑖, 𝑗𝑗), which then depends recursively on the value difference in other 

states of the LOB and the probability of transition. For example, consider HFTs’ decision on the 

ask side under state (0, 0). The six types of events defined in equation (1) change 𝐷𝐷(0,0)(𝑄𝑄) in the 

following way. BAT buyers (sellers) arrive with probability 𝑝𝑝1; a BAT buyer chooses to undercut 

HFTs on the bid side and changes the value difference to 𝐷𝐷(0,1)(𝑄𝑄); a BAT seller chooses to 

undercut the bid side and changes the value difference to 𝐷𝐷(1,0)(𝑄𝑄). Non-algo buyers (sellers) 

arrive with probability 𝑝𝑝2; a non-algo buyer submits a market buy order, moves the queue position 

forward by one unit, and changes the value difference to 𝐷𝐷(0,0)(𝑄𝑄 − 1); a non-algo seller submits 

a market sell order and does not affect 𝐷𝐷(0,0)(𝑄𝑄), because the LOB on the bid side is refilled 

immediately by HFTs. Value jumps occur with probability 𝑝𝑝3. In an upward value jump, a liquidity 

providing HFT on the ask side gains – 𝑑𝑑
2
𝑁𝑁−1
𝑁𝑁

, a stale-quote sniper gains 𝑑𝑑
2
1
𝑁𝑁

, and their difference is 

−𝑑𝑑
2
. In a downward value jump, the liquidity provider cancels the limit order, thereby changing 

the value of both the liquidity provision and stale-quote snipping to zero. Equation (14) contains 

𝑚𝑚𝑚𝑚𝑚𝑚{0, . } operator, because HFTs do not queue at the 𝑄𝑄𝑡𝑡ℎ position once the expected payoff is 

below 0.  

We present the solution for 𝐷𝐷(𝑖𝑖,𝑗𝑗)(𝑄𝑄) for any 𝑖𝑖, 𝑗𝑗, and 𝑄𝑄 in the Appendix, and Figure 6 

provides a numerical example. Figure 6 shows that the value of liquidity provision decreases in 𝑄𝑄, 

while the value of stale-quote sniping increases in 𝑄𝑄 . HFTs provide liquidity as long as 

𝐿𝐿𝐿𝐿(𝑖𝑖,𝑗𝑗)(𝑄𝑄) >  𝑆𝑆𝑆𝑆(𝑖𝑖,𝑗𝑗)(𝑄𝑄). For example, in state(0,0), the LOB has a depth of two shares. 
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𝐿𝐿𝐿𝐿(𝑖𝑖,𝑗𝑗)(𝑄𝑄) and 𝑆𝑆𝑆𝑆(𝑖𝑖,𝑗𝑗)(𝑄𝑄)  also depend on the state of the LOB. A comparison between the 

left and right panels of Figure 6 shows that an undercutting order reduces HFTs’ depth on the same 

side of the LOB by approximately one share. Intuitively, an undercutting order on the same side 

of HFTs’ limit orders directly reduces the execution priority of HFTs.  

 An undercutting BAT order on the opposite side of the LOB has an indirect effect. For 

example, in state (1, 1), a BAT buyer takes liquidity at price 𝑣𝑣𝑡𝑡 + 𝑑𝑑
6
 and changes the state to (0, 1), 

which enables an HFT limit sell order at price 𝑣𝑣𝑡𝑡 + 𝑑𝑑
2
 to trade with the next buy market order from 

a non-algo trader. In state (1, 0), a BAT buyer chooses to submit a limit order at price 𝑣𝑣𝑡𝑡 −
𝑑𝑑
6
 and 

changes the state to (1, 1). An HFT limit sell order at price 𝑣𝑣𝑡𝑡 + 𝑑𝑑
2
 then needs to wait at least one 

more period to get execution. More generally, an undercutting BAT limit buy (sell) order may 

attract future BAT sellers (buyers) to take liquidity, making future BATs less likely to undercut 

HFTs. In turn, the value of liquidity provision increases relative to sniping, thereby incentivizing 

HFTs to provide larger depth. This indirect effect, however, is rather small.17   

 When 1
5(1−𝛽𝛽)

< 𝜆𝜆𝐼𝐼
𝜆𝜆𝐽𝐽

< 1
1−𝛽𝛽

, HFTs quote 5𝑑𝑑
6

, and BATs’ strategies follow the intuition 

outlined in Section 4, where they choose between flash limit orders and regular limit orders. The 

only main difference is that the four price levels between 𝑣𝑣𝑡𝑡 + 5𝑑𝑑
6

 and 𝑣𝑣𝑡𝑡 −
5𝑑𝑑
6

 increase the states 

to 24 = 16. We do not report the results for brevity but they are available upon request. In Section 

5, we discuss the case when the break-even spread equals 7𝑑𝑑
6

.  

 

                                                           
17 This indirect effect is so small that it does not affect depth in our numerical example, because the number of shares 
is an integer. It is possible for a depth of (1, 1) to be higher than (1, 0) for numerical values such as  𝜆𝜆𝐼𝐼

𝜆𝜆𝐽𝐽
= 4.9 and 𝛽𝛽 =

0.06, and the results are available upon request. 
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5. Stub Quotes and Mini-Flash Crashes  

 In Proposition 4, we show that HFTs quote a bid-ask spread wider than the size of the jump 

when adverse selection risk is high or the fraction of BATs is large. We call such quotes stub 

quotes. A mini-flash crash occurs when a market order hits a stub quote.18  

 

Proposition 4 (Stub Quotes and Mini-Flash Crash). HFTs quote a half bid-ask spread of 7𝑑𝑑
6

 

when 𝜆𝜆𝐼𝐼
𝜆𝜆𝐽𝐽

< 1
5(1−𝛽𝛽)

. Although HFTs quote wider bid-ask spreads, the average transaction cost for 

non-HFTs is lower than the case under which the tick size is 𝑑𝑑. 

 

A reduction in tick size increases the bid-ask spread quoted by HFTs, because BATs no 

longer demand liquidity from them. Surprisingly, liquidity improves on average despite the 

increase in the bid-ask spread quoted by HFTs. Figure 3 shows that the fraction of BATs needs to 

be at least 4
5
 for stub quotes to occur. BATs’ maximum transaction cost is 𝑑𝑑

6
 if they use flashing 

limit orders. Non-algo traders’ maximum transaction cost is 7𝑑𝑑
6

 if they always hit stub quotes. The 

average transaction cost for non-HFTs is then at most 11𝑑𝑑
30

 (4
5

× 𝑑𝑑
6

+ 1
5

× 7𝑑𝑑
6

), which is lower than 𝑑𝑑
2
, 

the half bid-ask spread under larger tick size 𝑑𝑑. The average transaction cost for non-HFTs must 

be even lower, because 1) the fraction of BATs is higher than 4
5
 in the stub quote area; 2) BATs 

may further reduce transaction costs by submitting regular limit orders; and 3) non-algo traders 

may take liquidity from BATs. 

                                                           
18 In our model, the size of the mini flash crash can only be as large as 7𝑑𝑑

6
, because the size of a value jump is 𝑑𝑑. An 

increase in the support of jump size leads to stub quotes further away from the midpoint, thereby creating mini-flash 
crashes of larger size. Such an extension adds mathematical complexity without conveying new intuition. 
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As BATs do not constantly stay in the market to provide liquidity, non-algo traders may 

hit HFTs’ stub quotes. A small tick size then increases the volatility of the bid-ask spread and 

harms non-algo traders that encounter the stub quotes. We discuss policy implication for mini-

flash crashes in the next section.  

 

6. Predictions and Policy Implications  

By incorporating a new type of algorithmic trader and discrete pricing in our model, we offer a 

number of predictions on traders’ behaviors, liquidity, and the impact of speed competition on 

social welfare. Some predictions rationalize existing empirical findings, whereas others have not 

been tested. In Subsection 6.1, we summarize the predictions on who provides liquidity and when. 

In Subsection 6.2, we summarize the predictions on the welfare implications on speed versus price 

competition. In Subsection 6.2, we discuss the use of message-to-trade ratio as the cross-sectional 

proxy for HFTs’ activity.   

 

6.1 Liquidity provision  

Our model shows that who provides liquidity depends on the tick size, adverse selection risk, 

motivation of the trade, and the speed of the trade. In Prediction 1, the queuing hypothesis, we 

posit that HFTs provide a larger fraction of liquidity when tick size is large.  

 

Prediction 1. (Queening Channel of Liquidity Provision): An increase in tick size increases the 

fraction of liquidity provided by HFTs. Non-HFTs are more likely to undercut HFTs when the tick 

size is small. An increase in the tick size increases the revenue from liquidity provision, but forces 

non-HFTs to use more market orders. 
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Researchers in existing literature find that speed advantages reduce HFTs’ adverse 

selection cost (see Jones (2013) and Menkveld (2016) for the survey) and inventory cost (Brogaard 

et al. 2015). These reduced costs of intermediation raise the concern that “HFTs use their speed 

advantage to crowd out liquidity provision when the tick size is small and stepping in front of 

standing limit orders is inexpensive” (Chordia et al. 2013). Yao and Ye (2016) and O’Hara, Saar 

and Zhong (2015), however, find that it is a large tick size that crowds out non-HFT liquidity 

provision.19 Our model provides two economic mechanisms to bridge the gap: (1) non-HFTs have 

incentives to undercut HFTs because they are less likely to establish time priory at the same price 

as HFTs; and (2) non-HFTs are able to undercut HFTs if aggressive limit orders reduce their 

transaction costs relative to marker orders. In Proposition 1, when the tick size is large, HFTs 

dominate liquidity provision due to their top position in the queue. When tick size becomes smaller, 

as posited in Propositions 2-4, BATs provide liquidity by establishing price priority over HFTs.    

 Brogaard et al. (2015) find that non-HFTs quote a tighter bid-ask spread than HFTs, and 

Yao and Ye (2016) find that non-HFTs are more likely to establish price priority over HFTs as the 

tick size decreases, both of which provide additional empirical support for the queuing channel. 

Yao and Ye (2016) also find that an increase in tick size increases the revenue generated from 

using limit orders, but decreases non-HFTs’ use of limit orders. Our model provides an economic 

mechanism to rationalize this puzzle. A large tick size increases the length of the queue, which 

forces traders who do not have a speed advantage to demand liquidity.  

Prediction 2 discusses the speed competition of taking liquidity.  

 

                                                           
19  Yao and Ye (2016) consider relative tick size (1 cent uniform tick size divided by price) the economically 
meaningful tick size for empirical work.   
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Prediction 2. (Speed Competition of Taking Liquidity): Non-HFTs are more likely to provide 

liquidity at price levels that cross the midpoint (flash limit orders) than HFTs do. HFTs are more 

likely to take liquidity from flash limit orders, but they do not adversely select flash limit orders.  

  

 In the flash equilibrium, BATs offer aggressive limit orders to prompt HFTs to take 

liquidity. To our knowledge, no existing empirical work tests Prediction 2 using data with traders’ 

identities. Yet Latza, Marsh, and Payne (2014) provide empirically evidence consistent with 

Prediction 2. They classify a market order as “fast” if it executes against a standing limit order that 

is less than 50 milliseconds old. Because of the speed of taking liquidity, it is natural to expect that 

fast market orders are from HFTs. Latza, Marsh, and Payne (2014) find that fast market orders 

often execute against limit orders that cross the midpoint, and they lead to virtually no permanent 

price impact, whereas market orders from slow trades have positive long run price impacts. In our 

model, liquidity providers use flash limit orders in a fast trade, which suffer less from the adverse 

selection; liquidity providers use regular limit orders in a slow trade, which suffer more from 

adverse selection costs.  

 

Prediction 3. (Liquidity Provision and Adverse Selection Risk): The fraction of liquidity 

provided by HFTs decreases with the level of adverse selection. 

 

Yao and Ye (2016) find that HFTs provide less liquidity for stocks with higher adverse 

selection risk, a result inconsistent with HFTs’ reduced adverse selection cost (Hoffmann 2014). 

Queuing serves as a channel to reconcile this contradiction. When adverse selection risk is low, 

the tick size is binding and HFTs provide more liquidity through winning time priority in the queue. 
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An increase in adverse selection risk raises the break-even bid-ask spread above one tick, allows 

non-HFTs to undercut HFTs, and decreases HFTs’ liquidity provision.  

Prediction 4 addresses who provides liquidity during a mini-flash crash, an extreme price 

movement. 

 

Prediction 4. (Stub Quotes and Mini Flash Crashes): A mini-flash crash is more likely to occur 

when the adverse selection risk is high or when the tick size is small. During a mini-flash crash, 

HFTs provide liquidity and non-HFTs demand liquidity. A downward mini-flash crash is more 

likely to follow a downward value jump, while an upward mini-flash crash is more likely to follow 

an upward value jump.  

 

A comparison of Propositions 1 and 4 shows that stub quotes are more likely to occur when 

the tick size is small. When the tick size is large, BATs cannot establish execution priority over 

HFTs. When the tick size is small, BATs can establish price priority over HFTs, which increases 

the adverse selection cost for HFTs through two channels. First, it reduces the liquidity demand 

for HFTs. Second, BATs’ undercutting orders reduce the execution probability of HFTs’ limit 

orders. When the adverse selection cost is higher enough, HFTs back away from liquidity 

provision by quoting stub quotes.  

HFTs are more likely to retreat to stub quotes when adverse selection risk is high, because 

(1) higher adverse selection risk widens the break-even bid-ask spread; and (2) a wider break-even 

bid-ask spread also allows BATs to undercut HFTs, which further increases the adverse selection 

cost for HFTs.  

HFTs’ retreat to stub quotes is only a necessary for a mini-flash crash, because BATs are 
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able to provide liquidity if HFTs retreat. Yet BATs do not continuously provide liquidity in the 

market, making it possible for non-algo traders’ market orders to hit stub quotes and to cause a 

mini-flash crash. In cross-section, stocks with smaller tick sizes or higher adverse selection risk 

are more likely to incur mini-flash crashes.  

In time series, an initial downward (upward) jump increases the probability of a downward 

(upward) mini-flash crash, because the initial downward (upward) jump clears all limit orders from 

BATs on the bid (ask) side of the LOB. A market order becomes more likely to hit stub quotes 

before BATs refill the book.  

To the best of our knowledge, no existing paper tests the cross-sectional predictions of the 

mini-flash crashes. Brogaard et al. (2016) analyze the time series pattern of mini-flash crashes. 

They show that, 20 seconds before the mini-flash crash, HFTs neither demand nor supply liquidity, 

whereas non-HFTs demand and supply the same amount of liquidity; 10 seconds before the mini-

flash crash, HFTs demand liquidity from non-HFTs; at the time of the mini-flash crash, HFTs 

provide liquidity to non-HFTs, but at much wider spread. The authors also find that liquidity 

provision from the mini-flash crash is profitable. This evidence is consistent with the theoretical 

mechanism for mini-flashes crash we document. We find that: (1) in normal times, non-HFTs 

dominate both liquidity provision and liquidity demanding; (2) slightly before a mini-flash crash, 

HFTs take liquidity and remove limit orders from BATs; (3) a mini-flash crash occurs when a non-

algo trader’s market order hit HFTs’ stub quotes, which leaves positive profit to HFTs.   

 

6.2 Liquidity, social welfare, and policy  

On April 5, 2012, the U.S. Congress passed the Jumpstart Our Business Startups (JOBS) Act. 

Section 106 (b) of the Act requires the Securities and Exchange Commission (SEC) to examine 
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the effect of the tick size on IPOs. On October 3, 2016, the SEC started to implement a pilot 

program to increase the tick size to five cents for 1,200 small- and mid-cap stocks. Proponents of 

the proposal argue that a larger tick size can improve liquidity (Weild, Kim, and Newport 2012). 

Prediction 5, however, posits that an increase in tick size increases transaction costs.   

 

Prediction 5. A larger tick size increases the depth at the BBO, but it also increases the effective 

bid-ask spread, the transaction costs paid by liquidity demanders.  

 

Yao and Ye (2016) find empirical evidence consistent with Prediction 5. Holding the BBO 

constant, an increase in depth implies an increase in liquidity. Yet these authors also find that the 

quoted spread increases after an increase in tick size. When both quoted spread and depth increase, 

the most relevant liquidity measure becomes the effective bid-ask spread, the transaction cost paid 

by liquidity demanders (Bessembinder 2003).  Our model shows that constrained price competition 

increases effective spread, which is consistent with Yao and Ye (2016). Our model prediction, 

along with the empirical evidence in Yao and Ye (2016), shows that an increase in tick size would 

not improve liquidity.   

Proponents to increase the tick size also argue that a wider tick size increases market-

making profits, supports sell-side equity research and, eventually, increases the number of IPOs 

(Weild, Kim, and Newport 2012). We find that a wider tick size increases market-making profits, 

but the profit belongs to traders with higher speed. Therefore, a wider tick size is more likely to 

result in an arms race in latency reduction than in sell-side equity research.  

 

Prediction 6 (Welfare): An increase in tick size harms liquidity demanders and does not benefit 
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liquidity suppliers after accounting for the cost of the investment in speed.  

 

An increase in tick size leads to an increase in the effective spread, which harms liquidity 

demanders. An increase in tick size also does not benefit liquidity providers as the cost of the speed 

investment dissipates the higher rents created by tick size.  

Yao and Ye (2016) show that tick size is currently surprisingly binding. In their stratified 

sample of 117 Russell 300 stocks, the tick size is binding 41% of the time. This finding, along with 

Predictions 5 and 6, suggest that the SEC should consider reducing the tick size, particularly for 

large liquid stocks.  

One possible side effect of decreasing the tick size is more frequent mini-flash crashes, as 

posited in Prediction 4. An increase in tick size prevents mini-flash crashes, but it also increases 

the transaction costs for average trades. A more effective solution to prevent mini-flash crashes is 

to slow down the market, particularly during periods of market stress. In a standard Walrasian 

equilibrium, price is continuous and time is discrete. Modern financial markets exhibit exactly the 

opposite structure: price competition is constrained by the tick size, whereas time is divisible at 

the nanosecond level in electronic trading platforms (Gao, Yao, and Ye 2013). We argue that the 

best solution to mini-flash crashes is to slow down the market to wait for natural trading interests 

to reconvene. 

 

6.3 Message-to-trade as a cross-sectional proxy for HFT activity  

Because HFTs are known for their high order cancellation rates, the message-to-trade ratio 

is widely used as a proxy for HFTs’ activity, particularly for HFTs’ liquidity provision (Biais and 

Foucault 2014). Yet Yao and Ye (2016) find that stocks with a higher fraction of liquidity provided 
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by HFTs have a lower message-to-trade ratio. We provide one interpretation for this surprising 

negative correlation in Prediction 7.  

 

Prediction 7. (Message-to-Trade Ratio). Stocks with a smaller tick size have a lower fraction of 

liquidity provided by HFTs but a higher message-to-trade ratio. 

 

A decrease in tick size decreases the fraction of liquidity provided by HFTs (Prediction 4), 

but it leads to more cancellations. Under a large tick size in our model, HFTs with liquidity 

provision positions in the queue do not need to cancel their orders when non-HFTs arrive, because 

non-HFTs cannot establish time priority over HFTs. A decrease in tick size increases the 

possibility for non-HFTs to undercut HFTs. If non-HFTs submit flash limit orders, HFTs race to 

take liquidity, and the losers of the race cancel their orders. If non-HFTs submit regular limit orders, 

HFTs reduce their depth once non-HFTs undercut, and HFTs increase their depth once an 

undercutting order gets executed. These changes in depth lead to frequent cancellation. 

Our model also provide a new interpretation of flickering quotes. Yueshen (2014) shows 

that flickering quotes occur when new information causes the price to move a new level. We show 

in this paper that HFTs can cancel orders in the absence of information. These periodic additions 

and cancellations of orders also differ from Baruch and Glosten (2013), who interpret the existence 

of flicking quotes using a mixed-strategy equilibrium.  

 

7. Conclusions 

This paper contributes to the literature on HFTs by including two salient features in current 

financial markets: discrete tick size and algorithmic traders who are not HFTs. BATs are more 
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likely to provide liquidity when tick size is small, because providing liquidity is less costly than 

demanding liquidity from HFTs. A large tick size constrains price competition, creates rents for 

liquidity provision, and encourages speed competition to capture such rents through the time 

priority rule. Higher adverse selection risk increases the break-even bid-ask spread relative to tick 

size, which allows BATs to establish price priority over HFTs and reduces the fraction of liquidity 

provided by HFTs. All these predictions are consistent with the empirical findings by Yao and Ye 

(2016).   

Yao and Ye (2016) find that the message-to-trade ratio, a widely used empirical proxy for 

HFTs’ activity, has a negative cross-sectional correlation with HFT liquidity provision. This paper 

provides a theoretical foundation for their surprising negative correlation. A large tick sizes 

induces HFTs to race for the top queue position, but HFTs are less likely to cancel orders once 

they secure the queue position. HFTs cancel orders more frequently for stocks with smaller tick 

sizes, but they also provide a lower fraction of liquidity. Both theoretical and empirical evidences 

suggest that researchers should not apply the message-to-trade ratio as a cross-sectional proxy for 

HFT activity. 

Our model also provides several new testable predictions. We predict that 1) non-HFTs are 

more likely to provide liquidity at price levels that cross the midpoint than HFTs do, and these 

limit orders are more likely to be taken by HFTs; 2) a mini-flash crash is more likely to occur for 

stocks with smaller tick sizes and higher adverse selection risk; 3) an upward (downward) mini-

flash crash is more likely to follow an initial price jump in the same direction.  

Our model shows that a larger tick size increases transaction cost and harms liquidity 

demanders. Yet liquidity suppliers do not benefit from a larger tick size, because the investment 

in speed dissipates the rents created by tick size. We challenge the rationale for the recent 
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movement to increase the tick size to five cents, and we encourage regulators to consider 

decreasing tick size, particularly for liquid stocks.   

The inclusion of trading algorithms designed by sophisticated non-HFTs adds significant 

new insight. For example, we find that BATs can prompt HFTs to demand liquidity using flash 

limit orders to reduce transaction costs. This finding cautions the evaluation of the welfare impact 

of HFTs based on demand versus supply liquidity. We take an initial step to examine the 

interaction between high-frequency and non-high-frequency algorithms, but our model is 

parsimonious. For example, BATs in our model do not have private information and they choose 

order types only upon arrival. Extending our model toward more realistic setups would prove to 

be fruitful.   
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Appendix 

Proof for Lemma 1  

For the 𝑄𝑄𝑡𝑡ℎ share in the queue at half bid-ask spread 𝑠𝑠
2
, we define its value for the liquidity provider 

as 𝐿𝐿𝐿𝐿𝑠𝑠/2(𝑄𝑄) and its value for each sniper as 𝑆𝑆𝑆𝑆𝑠𝑠/2(𝑄𝑄). In all proofs, we drop the subscript if 𝑠𝑠
2

= 𝑑𝑑
2
. 

HFTs race to provide liquidity for the first share at ± 𝑑𝑑
2
 iff 𝐿𝐿𝐿𝐿(1) > 𝑆𝑆𝑆𝑆(1).  

We consider the first share on ask side in the proof, and the race on the bid side follows 

symmetrically. When tick size in binding, both BATs and non-algo traders demand liquidity, so we 

use non-HFTs to refer to both in the proofs of Lemma 1 and Proposition 1. A non-HFT seller does 

not change the state of the LOB; an non-HFT buyer, who arrives with probability  
1
2𝜆𝜆𝐼𝐼

𝜆𝜆𝐼𝐼+𝜆𝜆𝐽𝐽
 provides 

a profit of 𝑑𝑑
2
 to HFT liquidity provider; fundamental value jumps up with probability 

1
2𝜆𝜆𝐽𝐽
𝜆𝜆𝐼𝐼+𝜆𝜆𝐽𝐽

 and 

costs an HFT firm 𝑑𝑑
2
𝑁𝑁−1
𝑁𝑁

; fundamental value jumps down with probability 
1
2𝜆𝜆𝐽𝐽
𝜆𝜆𝐼𝐼+𝜆𝜆𝐽𝐽

, which reduces the 

value of the current queue position to 0. Therefore:  

𝐿𝐿𝐿𝐿(1) =
1
2 𝜆𝜆𝐼𝐼

𝜆𝜆𝐼𝐼 + 𝜆𝜆𝐽𝐽
𝑑𝑑
2

+
1
2 𝜆𝜆𝐼𝐼

𝜆𝜆𝐼𝐼 + 𝜆𝜆𝐽𝐽
𝐿𝐿𝐿𝐿(1) −

1
2 𝜆𝜆𝐽𝐽

𝜆𝜆𝐼𝐼 + 𝜆𝜆𝐽𝐽
𝑑𝑑
2
𝑁𝑁 − 1
𝑁𝑁

+
1
2 𝜆𝜆𝐽𝐽

𝜆𝜆𝐼𝐼 + 𝜆𝜆𝐽𝐽
∙ 0 

𝐿𝐿𝐿𝐿(1) =
𝜆𝜆𝐼𝐼

𝜆𝜆𝐼𝐼 + 2𝜆𝜆𝐽𝐽
𝑑𝑑
2
−

𝜆𝜆𝐽𝐽
𝜆𝜆𝐼𝐼 + 2𝜆𝜆𝐽𝐽

𝑑𝑑
2
𝑁𝑁 − 1
𝑁𝑁

 

Each sniper has a probability of 1
𝑁𝑁

  to snipe the stale quote after an upward value jump, and a 

successful sniping leads to a profit of 𝑑𝑑
2
, so:  

𝑆𝑆𝑆𝑆(1) =
𝜆𝜆𝐽𝐽

𝜆𝜆𝐼𝐼 + 2𝜆𝜆𝐽𝐽
𝑑𝑑
2

1
𝑁𝑁
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𝐿𝐿𝐿𝐿(1) > 𝑆𝑆𝑆𝑆(1)
 
⇔

𝜆𝜆𝐼𝐼
𝜆𝜆𝐼𝐼 + 2𝜆𝜆𝐽𝐽

𝑑𝑑
2
−

𝜆𝜆𝐽𝐽
𝜆𝜆𝐼𝐼 + 2𝜆𝜆𝐽𝐽

𝑑𝑑
2
𝑁𝑁 − 1
𝑁𝑁

>  
𝜆𝜆𝐽𝐽

𝜆𝜆𝐼𝐼 + 2𝜆𝜆𝐽𝐽
𝑑𝑑
2

1
𝑁𝑁

 

𝜆𝜆𝐼𝐼
𝜆𝜆𝐽𝐽

> 1 

Therefore, the tick size is binding at 𝑑𝑑
2
 if 𝜆𝜆𝐼𝐼

𝜆𝜆𝐽𝐽
> 1.  ■ 

Proof for Lemma 2 

We prove Lemma 2 using mathematical induction. 

1. From the proof for Lemma 1, 

𝐿𝐿𝐿𝐿(1) =
𝜆𝜆𝐼𝐼

𝜆𝜆𝐼𝐼 + 2𝜆𝜆𝐽𝐽
𝑑𝑑
2
−

1
2

[1 −
𝜆𝜆𝐼𝐼

𝜆𝜆𝐼𝐼 + 2𝜆𝜆𝐽𝐽
]
𝑑𝑑
2
𝑁𝑁 − 1
𝑁𝑁

, 

which satisfies equation (3). 

2. Suppose that equation (3) holds for some 𝑄𝑄 ∈ ℕ+. The following proof shows that it holds for 

𝑄𝑄 + 1 ∈ ℕ+ as well. 

𝐿𝐿𝐿𝐿(𝑄𝑄 + 1) =
1
2 𝜆𝜆𝐼𝐼

𝜆𝜆𝐼𝐼 + 𝜆𝜆𝐽𝐽
𝐿𝐿𝐿𝐿(Q) +

1
2 𝜆𝜆𝐼𝐼

𝜆𝜆𝐼𝐼 + 𝜆𝜆𝐽𝐽
𝐿𝐿𝐿𝐿(𝑄𝑄 + 1) −

1
2 𝜆𝜆𝐽𝐽

𝜆𝜆𝐼𝐼 + 𝜆𝜆𝐽𝐽
𝑑𝑑
2
𝑁𝑁 − 1
𝑁𝑁

+
1
2 𝜆𝜆𝐽𝐽

𝜆𝜆𝐼𝐼 + 𝜆𝜆𝐽𝐽
∙ 0 

 𝐿𝐿𝐿𝐿(Q + 1)  =  
𝜆𝜆𝐼𝐼

𝜆𝜆𝐼𝐼 + 2𝜆𝜆𝐽𝐽
𝐿𝐿𝐿𝐿(Q)−

𝜆𝜆𝐽𝐽
𝜆𝜆𝐼𝐼 + 2𝜆𝜆𝐽𝐽

𝑑𝑑
2
𝑁𝑁 − 1
𝑁𝑁

= �
𝜆𝜆𝐼𝐼

𝜆𝜆𝐼𝐼 + 2𝜆𝜆𝐽𝐽
�
𝑄𝑄+1 𝑑𝑑

2
−

1
2 �

𝜆𝜆𝐼𝐼
𝜆𝜆𝐼𝐼 + 2𝜆𝜆𝐽𝐽

− �
𝜆𝜆𝐼𝐼

𝜆𝜆𝐼𝐼 + 2𝜆𝜆𝐽𝐽
�
𝑄𝑄+1

�
𝑑𝑑
2
𝑁𝑁 − 1
𝑁𝑁

−
𝜆𝜆𝐽𝐽

𝜆𝜆𝐼𝐼 + 2𝜆𝜆𝐽𝐽
𝑑𝑑
2
𝑁𝑁 − 1
𝑁𝑁

= �
𝜆𝜆𝐼𝐼

𝜆𝜆𝐼𝐼 + 2𝜆𝜆𝐽𝐽
�
𝑄𝑄+1 𝑑𝑑

2
−

1
2 [1− �

𝜆𝜆𝐼𝐼
𝜆𝜆𝐼𝐼 + 2𝜆𝜆𝐽𝐽

�
𝑄𝑄+1

] 
𝑑𝑑
2
𝑁𝑁 − 1
𝑁𝑁

 

Thus, equation (3) holds with 𝑄𝑄 replaced by 𝑄𝑄 + 1. Hence equation (3) holds for all Q ∈

ℕ+. ■ 

Proof of Proposition 2 
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BATs use flash limit orders when regular limit orders are more costly. We start the proof by finding 

the boundary between the flash equilibrium and the undercutting equilibrium. 

In an undercutting equilibrium, a BAT submits a limit order to an empty LOB (0,0) and 

changes the state to (1,0); a BAT submits a limit order to (0,1) and changes the state to (1,1). 

Denote the cost for the first case 𝐶𝐶(1,0) and the cost for the second case 𝐶𝐶(1,1). Then  

�
𝐶𝐶(1,0) = 𝑝𝑝1 ∙ 𝐶𝐶(1,1) + 𝑝𝑝1 ∙ 𝐶𝐶(1,0) + 𝑝𝑝2 �−

𝑑𝑑
6
� + 𝑝𝑝2 ∙ 𝐶𝐶(1,0) + 𝑝𝑝3

5𝑑𝑑
6

+ 𝑝𝑝3 ∙ 𝐶𝐶(1,0)

𝐶𝐶(1,1) = 𝑝𝑝1(−𝑑𝑑
6

) + 𝑝𝑝1 ∙ 𝐶𝐶(1,0) + 𝑝𝑝2 �−
𝑑𝑑
6
� + 𝑝𝑝2 ∙ 𝐶𝐶(1,0) + 𝑝𝑝3

5𝑑𝑑
6

+ 𝑝𝑝3 ∙ 𝐶𝐶(1,0)
      (A.1) 

Insert Figure A.1 about Here 

In equation (A.1) and Figure A.1, we describe six event types that can change the LOB in 

an undercutting equilibrium. Consider 𝐶𝐶(1,0) on the ask side. A BAT buyer and a BAT seller each 

arrive each with probability 𝑝𝑝1. A BAT buyer posts a limit order on the bid side and changes the 

state to 𝐶𝐶(1,1); a BAT seller uses a flash limit order so the state remains at 𝐶𝐶(1,0). A non-algo 

buyer and a non-algo seller arrives each with probability 𝑝𝑝2. The BAT seller enjoys a negative 

transaction cost of −𝑑𝑑
6
 when the non-algo buyer takes his liquidity; the non-algo seller hits a HFT’s 

quote on the bid side and does not change the state on the ask side. Upward and downward value 

jumps occur with probability  𝑝𝑝3 . An upward jump leads to a sniping cost of 5𝑑𝑑
6

, whereas a 

downward jump does not change the state of the limit order book.20 𝐶𝐶(1,1) differs in two ways 

from 𝐶𝐶(1,0). First, the arrival of a BAT buyer leads to execution of a sell limit order from a BAT.21 

Second, a downward jump under 𝐶𝐶(1,1) leads to sniping on the opposite side of the LOB and 

changes the state to 𝐶𝐶(1,0). 

                                                           
20 Here we assume that BATs position their order one tick above the new fundamental value. BATs are able to 
reposition their orders because they face no competition from other BATs in a short time period. 
21 The execution of this order results from our assumption that BATs do not queue after another limit order at the same 
price, but the intuition that a longer queue on the bid side increases the execution probability on the ask side holds 
true generally (Parlour 1998). 
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If an undercutting order gets immediate execution, the cost is −𝑑𝑑
6
.  𝐶𝐶(1,1) must be greater 

than the −𝑑𝑑
6

 because of the cost of being sniped. Therefore, 𝐶𝐶(1,0) − 𝐶𝐶(1,1) = 𝑝𝑝1 �𝐶𝐶(1,1) +

𝑑𝑑
6
� > 0. Intuitively, if a BAT chooses to post a sell limit order at 𝑣𝑣𝑡𝑡 + 𝑑𝑑

6
 on an empty book, he must 

post a sell limit order when the bid side has a limit order posed by a BAT, because the existence 

of a limit order on the bid side increases the execution probability for a limit order on the ask side. 

Note that our model starts with no limit orders from BATs, so 𝐶𝐶(1,0) < 𝑑𝑑
6
 is needed to jumpstart 

the undercutting equilibrium.  

The solution for equation (A.1) is:  

𝐶𝐶(1,1) =  
(−2 + 𝛽𝛽)𝜆𝜆𝐼𝐼 + 10𝜆𝜆𝐽𝐽

(2 − 𝛽𝛽)𝜆𝜆𝐼𝐼 + 2𝜆𝜆𝐽𝐽
𝑑𝑑
6

=
(−2 + 𝛽𝛽)𝑅𝑅 + 10

(2 − 𝛽𝛽)𝑅𝑅 + 2
d
6

 

𝐶𝐶(1,0) =
𝑑𝑑
6

[ 
𝛽𝛽𝛽𝛽
𝑅𝑅 + 1

∙
(−2 + 𝛽𝛽)𝑅𝑅 + 10

(2− 𝛽𝛽)𝑅𝑅 + 2
+

5 − (1 − 𝛽𝛽)𝑅𝑅
𝑅𝑅 + 1

] 

𝐶𝐶(1,0) < 𝑑𝑑
6
 iff 𝛽𝛽𝛽𝛽

𝑅𝑅+1
∙ (−2+𝛽𝛽)𝑅𝑅+10

(2−𝛽𝛽)𝑅𝑅+2
+ 5−(1−𝛽𝛽)𝑅𝑅

𝑅𝑅+1
< 1, i.e.,  

(2 − β)R2 + (−2− 4β)𝑅𝑅 − 4 > 0. 

Equation (2 − β)𝑅𝑅2 + (−2 − 4β)𝑅𝑅 − 4 = 0 has two roots: 𝑅𝑅1,2 = 1+2β±�4β2+9
2−β

,  

𝑅𝑅2 < 0, R1 = 1+2β+�4β2+9
2−β

. 

So BATs choose to undercut when 𝑅𝑅 > 𝑅𝑅1, because 𝐶𝐶(1,0) < d
6
; BATs choose to flash 

when 𝑅𝑅 < 𝑅𝑅1. 

Predictions on depth and HFT participation follow the proof of Proposition 1. ■ 

 

Proof of Proposition 3 
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1. Proposition 2 shows the boundary between the flash equilibrium and the undercutting 

equilibrium. 

2. The solution for HFT depth follows Figure 5 and equation (14). The depth decreases because 

the revenue of liquidity provision for HFTs decreases. BATs never take HFTs’ liquidity at 𝑑𝑑
2
, 

and BATs can also provide liquidity to non-algo traders. The decreased revenue for HFTs also 

reduces their entry.  

3. Equation (14) can be solved for any 𝑅𝑅 and 𝛽𝛽. Here we give an example for 𝑅𝑅 = 4 and 𝛽𝛽 = 0.1. 

First, we assume that all 𝐷𝐷(𝑖𝑖,𝑗𝑗)(1) > 0. Thus we solve: 

𝐷𝐷(0,0)(1) = 𝑝𝑝1𝐷𝐷(0,1)(1) + 𝑝𝑝1𝐷𝐷(1,0)(1)+𝑝𝑝2 ∙
𝑑𝑑
2

+ 𝑝𝑝2𝐷𝐷(0,0)(1) + 𝑝𝑝3 �−
𝑑𝑑
2
� + 𝑝𝑝3 ∙ 0

𝐷𝐷(1,0)(1) = 𝑝𝑝1𝐷𝐷(1,1)(1) + 𝑝𝑝1𝐷𝐷(1,0)(1)+𝑝𝑝2𝐷𝐷(0,0)(1) + 𝑝𝑝2𝐷𝐷(1,0)(1) + 𝑝𝑝3 �−
𝑑𝑑
2
� + 𝑝𝑝3 ∙ 0

𝐷𝐷(0,1)(1) = 𝑝𝑝1𝐷𝐷(0,1)(1) + 𝑝𝑝1𝐷𝐷(1,1)(1)+𝑝𝑝2 ∙
𝑑𝑑
2

+ 𝑝𝑝2𝐷𝐷(0,0)(1) + 𝑝𝑝3 �−
𝑑𝑑
2
� + 𝑝𝑝3 ∙ 0

𝐷𝐷(1,1)(1) = 𝑝𝑝1𝐷𝐷(0,1)(1) + 𝑝𝑝1𝐷𝐷(1,0)(1)+𝑝𝑝2𝐷𝐷(0,1)(1) + 𝑝𝑝2𝐷𝐷(1,0)(1) + 𝑝𝑝3 �−
𝑑𝑑
2
� + 𝑝𝑝3 ∙ 0

 

We then obtain: 

𝐷𝐷(0,0)(1)

=
8 + 12𝑅𝑅 + 12β𝑅𝑅 − 4𝑅𝑅2 + 24β𝑅𝑅2 + 2β2𝑅𝑅2 − 12𝑅𝑅3 + 21β𝑅𝑅3 − 2β2𝑅𝑅3 − β3𝑅𝑅3 − 4𝑅𝑅4 + 7β𝑅𝑅4 − 4β2𝑅𝑅4 + β3𝑅𝑅4

2(−16− 48𝑅𝑅 − 52𝑅𝑅2 + 12β𝑅𝑅2 − 4β2𝑅𝑅2 − 24𝑅𝑅3 + 18β𝑅𝑅3 − 8β2𝑅𝑅3 + 2β3𝑅𝑅3 − 4𝑅𝑅4 + 7β𝑅𝑅4 − 4β2𝑅𝑅4 + β3𝑅𝑅4)

= 0.2202, 

𝐷𝐷(1,0)(1)

=
8 + 24𝑅𝑅 + 20𝑅𝑅2 + 6β𝑅𝑅2 − 4β2𝑅𝑅2 + 12β𝑅𝑅3 − 5β2𝑅𝑅3 − β3𝑅𝑅3 − 4𝑅𝑅4 + 7β𝑅𝑅4 − 4β2𝑅𝑅4 + β3𝑅𝑅4

2(−16− 48𝑅𝑅 − 52𝑅𝑅2 + 12β𝑅𝑅2 − 4β2𝑅𝑅2 − 24𝑅𝑅3 + 18β𝑅𝑅3 − 8β2𝑅𝑅3 + 2β3𝑅𝑅3 − 4𝑅𝑅4 + 7β𝑅𝑅4 − 4β2𝑅𝑅4 + β3𝑅𝑅4)

= 0.0527, 

𝐷𝐷(0,1)(1) = 8+12𝑅𝑅+12β𝑅𝑅−4𝑅𝑅2+24β𝑅𝑅2+2β2𝑅𝑅2−12𝑅𝑅3+21β𝑅𝑅3−5β2𝑅𝑅3+2β3𝑅𝑅3−4𝑅𝑅4+7β𝑅𝑅4−4β2𝑅𝑅4+β3𝑅𝑅4

2(−16−48𝑅𝑅−52𝑅𝑅2+12β𝑅𝑅2−4β2𝑅𝑅2−24𝑅𝑅3+18β𝑅𝑅3−8β2𝑅𝑅3+2β3𝑅𝑅3−4𝑅𝑅4+7β𝑅𝑅4−4β2𝑅𝑅4+β3𝑅𝑅4) = 0.2205,  
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𝐷𝐷(1,1)(1)

=
8 + 24𝑅𝑅 + 20𝑅𝑅2 + 2β2𝑅𝑅2 + 6β𝑅𝑅3 + β2𝑅𝑅3 − β3𝑅𝑅3 − 4𝑅𝑅4 + 7β𝑅𝑅4 − 4β2𝑅𝑅4 + β3𝑅𝑅4

2(−16− 48𝑅𝑅 − 52𝑅𝑅2 + 12β𝑅𝑅2 − 4β2𝑅𝑅2 − 24𝑅𝑅3 + 18β𝑅𝑅3 − 8β2𝑅𝑅3 + 2β3𝑅𝑅3 − 4𝑅𝑅4 + 7β𝑅𝑅4 − 4β2𝑅𝑅4 + β3𝑅𝑅4)

= 0.0593. 

𝐷𝐷(𝑖𝑖,𝑗𝑗)(1) > 0 is satisfied. Therefore, the depth is at least one share in any state of the book.  

Then we assume all 𝐷𝐷(𝑖𝑖,𝑗𝑗)(2) > 0. Thus we solve: 

𝐷𝐷(0,0)(2) = 𝑝𝑝1𝐷𝐷(0,1)(2) + 𝑝𝑝1𝐷𝐷(1,0)(2)+𝑝𝑝2𝐷𝐷(0,0)(1) + 𝑝𝑝2𝐷𝐷(0,0)(2) + 𝑝𝑝3 �−
𝑑𝑑
2
� + 𝑝𝑝3 ∙ 0

𝐷𝐷(1,0)(2) = 𝑝𝑝1𝐷𝐷(1,1)(2) + 𝑝𝑝1𝐷𝐷(1,0)(2)+𝑝𝑝2𝐷𝐷0,0(2) + 𝑝𝑝2𝐷𝐷(1,0)(2) + 𝑝𝑝3 �−
𝑑𝑑
2
� + 𝑝𝑝3 ∙ 0

𝐷𝐷(0,1)(2) = 𝑝𝑝1𝐷𝐷(0,1)(2) + 𝑝𝑝1𝐷𝐷(1,1)(2)+𝑝𝑝2𝐷𝐷(0,1)(1) + 𝑝𝑝2𝐷𝐷(0,0)(2) + 𝑝𝑝3 �−
𝑑𝑑
2
� + 𝑝𝑝3 ∙ 0

𝐷𝐷(1,1)(2) = 𝑝𝑝1𝐷𝐷(0,1)(2) + 𝑝𝑝1𝐷𝐷(1,0)(2)+𝑝𝑝2𝐷𝐷(0,1)(2) + 𝑝𝑝2𝐷𝐷(1,0)(2) + 𝑝𝑝3 �−
𝑑𝑑
2
� + 𝑝𝑝3 ∙ 0

 

We get:  

𝐷𝐷(0,0)(2) = 0.0448, 

𝐷𝐷(1,0)(2) = −0.0602 < 0, 

𝐷𝐷(0,1)(2) =  0.0451, 

𝐷𝐷(1,1)(2) = −0.0561 < 0.22 

We reject the assumption that all 𝐷𝐷(2) > 0. Therefore, under certain states, HFTs would 

not provide the second share of liquidity in the LOB. We start from the worst state for liquidity 

providers, (1,0), in which a BAT undercuts HFTs on the same side of the LOB, but no BAT 

undercuts HFTs on the other side of LOB.23 Therefore, 𝐷𝐷(1,0)(2) = 0 and all other 𝐷𝐷(𝑖𝑖,𝑗𝑗)(2) > 0. 

Thus we solve: 

                                                           
22 For briefness, the closed-form solution is not presented, but it is available upon request.  
23 In this state, an HFT liquidity provider on the ask side cannot trade with the next non-HFT buyer, because a BAT 
buyer chooses to provide liquidity and changes the state to (1,1), and a non-algo buyer chooses to take the BAT 
seller’s liquidity and changes the state to (0,0). 
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𝐷𝐷(0,0)(2) = 𝑝𝑝1𝐷𝐷(0,1)(2)+𝑝𝑝2𝐷𝐷(0,0)(1) + 𝑝𝑝2𝐷𝐷(0,0)(2) + 𝑝𝑝3 �−
𝑑𝑑
2
� + 𝑝𝑝3 ∙ 0 

𝐷𝐷(0,1)(2) = 𝑝𝑝1𝐷𝐷(0,1)(2) + 𝑝𝑝1𝐷𝐷(1,1)(2)+𝑝𝑝2𝐷𝐷(0,1)(1) + 𝑝𝑝2𝐷𝐷(0,0)(2) + 𝑝𝑝3 �−
𝑑𝑑
2
� + 𝑝𝑝3 ∙ 0 

𝐷𝐷(1,1)(2) = 𝑝𝑝1𝐷𝐷(0,1)(2)+𝑝𝑝2𝐷𝐷(0,1)(2) + 𝑝𝑝2𝐷𝐷(1,0)(2) + 𝑝𝑝3 �−
𝑑𝑑
2
� + 𝑝𝑝3 ∙ 0 

We obtain: 

𝐷𝐷(0,0)(2) = 0.0475 

𝐷𝐷(0,1)(2) = 0.0487 

𝐷𝐷(1,1)(2) = −0.0310. 

However, 𝐷𝐷(1,1)(2) is still smaller than 0. We further assume that 𝐷𝐷(1,1)(2) is also 0, i.e., 

HFTs cancel the second order when BATs submit limit orders on both sides. Therefore,  

𝐷𝐷(0,0)(2) = 𝑝𝑝1𝐷𝐷(0,1)(2) + 𝑝𝑝1 ∙ 0+𝑝𝑝2𝐷𝐷(0,0)(1) + 𝑝𝑝2𝐷𝐷(0,0)(2) + 𝑝𝑝3 �−
𝑑𝑑
2
� + 𝑝𝑝3 ∙ 0 

𝐷𝐷(0,1)(2) = 𝑝𝑝1𝐷𝐷(0,1)(2) + 𝑝𝑝1 ∙ 0+𝑝𝑝2𝐷𝐷(0,1)(1) + 𝑝𝑝2𝐷𝐷(0,0)(2) + 𝑝𝑝3 �−
𝑑𝑑
2
� + 𝑝𝑝3 ∙ 0 

We obtain: 

𝐷𝐷(0,0)(2) = 0.0488 

𝐷𝐷(0,1)(2) = 0.0489. 

Further calculation shows 𝐷𝐷(0,0)(3) = 0,𝐷𝐷(0,1)(3) = 0. We then conclude that 𝑄𝑄(0,0) =

𝑄𝑄(0,1) = 2 and 𝑄𝑄(1,0) = 𝑄𝑄(1,1) = 1 is the solution for equation (14) under R=4 and β=0.1. ■ 

 

Proof of Proposition 4 

HFTs do not compete to provide liquidity at 5𝑑𝑑
6

 when:  
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𝐿𝐿𝐿𝐿5𝑑𝑑
6

(1) < 𝑆𝑆𝑆𝑆5𝑑𝑑
6

(1) 

𝐿𝐿𝐿𝐿5𝑑𝑑
6

(1) = 𝑝𝑝1 ∙ 𝐿𝐿𝐿𝐿5𝑑𝑑
6

(1) + 𝑝𝑝1 ∙ 0 + 𝑝𝑝2 ∙
5𝑑𝑑
6

+ 𝑝𝑝2 ∙ 𝐿𝐿𝐿𝐿5𝑑𝑑
6

(1) − 𝑝𝑝3
𝑑𝑑
6
𝑁𝑁 − 1
𝑁𝑁

+ 𝑝𝑝3 ∙ 0 

𝐿𝐿𝐿𝐿5𝑑𝑑
6

(1) =
(1 − 𝛽𝛽)𝜆𝜆𝐼𝐼
𝜆𝜆𝐼𝐼 + 2𝜆𝜆𝐽𝐽

5𝑑𝑑
6
−

𝜆𝜆𝐽𝐽
𝜆𝜆𝐼𝐼 + 2𝜆𝜆𝐽𝐽

𝑑𝑑
6
𝑁𝑁 − 1
𝑁𝑁

 

𝑆𝑆𝑃𝑃5𝑑𝑑
6

(1) =
𝜆𝜆𝐽𝐽

𝜆𝜆𝐼𝐼 + 2𝜆𝜆𝐽𝐽
𝑑𝑑
6

1
𝑁𝑁

 

∴  
(1 − 𝛽𝛽)𝜆𝜆𝐼𝐼
𝜆𝜆𝐼𝐼 + 2𝜆𝜆𝐽𝐽

5𝑑𝑑
6
−

𝜆𝜆𝐽𝐽
𝜆𝜆𝐼𝐼 + 2𝜆𝜆𝐽𝐽

𝑑𝑑
6
𝑁𝑁 − 1
𝑁𝑁

<  
𝜆𝜆𝐽𝐽

𝜆𝜆𝐼𝐼 + 2𝜆𝜆𝐽𝐽
𝑑𝑑
6

1
𝑁𝑁

 

𝑅𝑅 <  1
5(1−𝛽𝛽)

. ■ 
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Figure 1: Large vs. Small Tick Sizes  
This figure demonstrates the pricing grids under a large tick size 𝑑𝑑 and a small tick size 𝑑𝑑

3
. The fundamental 

value of the asset is 𝑣𝑣𝑡𝑡.  

v𝑡𝑡 − d
2

Tick size v𝑡𝑡

v𝑡𝑡 + d
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v𝑡𝑡 − d
6

V𝑡𝑡 − d
2

v𝑡𝑡 + d
2v𝑡𝑡 + d

2
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Figure 2: Depth and the Adverse Selection Risk under a Binding Tick Size  
This figure demonstrates the relationship between 𝑄𝑄, the depth at the BBO, and 𝑅𝑅 = 𝜆𝜆𝐼𝐼

𝜆𝜆𝐽𝐽
 under a binding tick 

size. An increase in the investor arrival rate (𝜆𝜆𝐼𝐼), or a decrease in intensity of jumps (𝜆𝜆𝐽𝐽), decreases the 
adverse selection cost and increases the depth. The solid line represents the depth under tick size 𝑑𝑑 and the 
dash line represents the depth under tick size 𝑑𝑑

3
.  
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Figure 3: Bid-ask Spread Quoted by HFTs under a Small Tick Size   
This figure demonstrates the half bid-ask spread quoted by HFTs as a function of 𝛽𝛽 (the fraction of BATs) 
and 𝑅𝑅 ≡ 𝜆𝜆𝐼𝐼

𝜆𝜆𝐽𝐽
 (the arrival intensity of non-HFTs relative to the value jump, a measure of adverse selection 

risk). When 𝑅𝑅 ≥ 5, adverse selection risk is low and the tick size is binding. HFTs quote a half bid-ask 
spread 𝑑𝑑

6
 and the spread is independent of the fraction of BATs. When 𝑅𝑅 < 5, HFTs’ quoted spreads weakly 

increase with the fraction of BATs and adverse selection risk. 
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Figure 4: The Undercutting and the Flash Trading Equilibrium 

This figure demonstrates two types of equilibrium when HFTs’ ask price is at 𝑣𝑣𝑡𝑡 + 𝑑𝑑
2
 and their bid price is 

at 𝑣𝑣𝑡𝑡 −
𝑑𝑑
2
. In the undercutting equilibrium, BATs place limit buys at 𝑣𝑣𝑡𝑡 −

𝑑𝑑
6
 and limit sells at 𝑣𝑣𝑡𝑡 + 𝑑𝑑

6
. These 

limit orders undercut the BBO by one tick and establish price priority in the LOB. In the flash equilibrium, 
BATs place limit buys at 𝑣𝑣𝑡𝑡 + 𝑑𝑑

6
 and limit sells at 𝑣𝑣𝑡𝑡 −

𝑑𝑑
6
. These orders cross the midpoint and immediately 

attract market orders from HFTs. BATs are more likely to cross the midpoint when the fraction of BATs 
(𝛽𝛽) is high or when the arrival intensity of non-HFTs relative to a value jump (𝑅𝑅 ≡ 𝜆𝜆𝐼𝐼

𝜆𝜆𝐽𝐽
) is low, because a 

high 𝛽𝛽 and a low 𝑅𝑅 reduce the probability that a limit order executes with non-HFTs before a value jump. 
To jumpstart an undercutting equilibrium, the expected transaction cost for a limit order undercutting one 
tick must be lower than 𝑑𝑑

6
. The short-dashed line, 𝐶𝐶(1,0) = 𝑑𝑑

6
, illustrates the boundary for such a condition. 
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Figure 5: States and Profits for HFT Liquidity Providers with the 𝑸𝑸𝒕𝒕𝒕𝒕 Position on the Ask Side 

This figure illustrates the dynamics of HFT queuing on 𝑣𝑣𝑡𝑡 + 𝑑𝑑
2
. In state (i, j), the number of undercutting 

BAT orders on the ask side is i and number of that on the bid side is j. BB and BS represent the arrival of 
BATs’ buy and sell limit orders, NB and NS represents the arrival of non-algo traders’ buy and sell market 
orders, and UJ and DJ denote the upward and downward value jumps. The number next to the event is the 
immediate payoff of the event.  
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Figure 6: Value of Liquidity Provision and Stale-Queue Sniping and Queue Length 

The x-axis is the value of HFT liquidity provision (LP) and stale-queue sniping (SN) for the four states of 
the LOB. In 𝑄𝑄(0,0), no BATs undercut HFTs in the LOB. In 𝑄𝑄(1,0), BATs undercut HFTs on the same 
side of the book. In 𝑄𝑄(0,1), BATs undercut HFTs on the opposite side of the book. In 𝑄𝑄(1,1), BATs 
undercut both sides of the book. LP decreases in the queue position and SN increases in the queue position. 
HFTs provide liquidity as long as LP>SN. 
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Figure A.1: States and Profits for BATs on the Ask Side  

This figure illustrates the dynamics of the BAT seller who posts a limit order at 𝑣𝑣𝑡𝑡 + 𝑑𝑑
6
. State (i, j) implies 

the number of BAT orders on the ask and bid sides. BB and BS implies the arrival of BAT buy and sell 
orders. NB and NS are arrivals of non-algo buy and sell orders, while UJ and DJ are upward and downward 
jumps. The states are defined after BATs submit the limit orders. For example, submitting a sell limit order 
to an empty book leads to state (1,0), and the exepceted cost for the limit order is 𝐶𝐶(1,0). If a BAT submits 
a limit order when a limit order already exists on the opposite side of the book, the state after submission is 
(1,1) and the cost is 𝐶𝐶(1,1).  
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