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Abstract
Much empirical evidence shows that short-selling costs have significant effects on option prices,
though theory is scant. Towards this, we provide an analysis of option prices with costly short-
selling and option marketmakers. In our model, as in practice, short-sellers incur a shorting fee
to borrow stock shares from investors who do not necessarily lend all their long positions (partial
lending). Our model delivers simple, closed-form, unique option bid and ask prices that represent
marketmakers’ expected cost of hedging, and are in terms of and preserve the well-known properties
of the Black-Scholes prices. Consistently with empirical evidence, we show that bid-ask spreads
of typical options and apparent put-call parity violations are increasing in the shorting fee. We
also find that option bid-ask spreads are decreasing in the partial lending, and the effects of costly
short-selling on option bid-ask spreads are more pronounced for relatively illiquid options with
lower trading activity. We then apply our model to the recent 2008 short-selling ban period and
obtain implications consistent with the documented behavior of option prices of banned stocks.
Finally, our quantitative analysis reveals that the effects of costly short-selling on option prices are
economically significant for expensive-to-short stocks and also sheds light on the behavior of option
prices and apparent mispricings of the Palm stock in 2000.
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1 Introduction

Short-selling activity has much grown over the last several decades and now accounts for a
significant fraction of trades.1 A pervasive imperfection in selling a stock short is that it is
costly (discussed below), and growing empirical evidence shows that these costs have signif-
icant effects on security prices, particularly on the prices of exchange-traded options. The
evidence includes option bid-ask spreads and put option implied volatilities being increasing
in the short-selling costs (Evans, Geczy, Musto, and Reed (2007), Lin and Lu (2016)), and
apparent put-call parity violations being increasing in the short-selling costs (Lamont and
Thaler (2003), Ofek, Richardson, and Whitelaw (2004), Evans, Geczy, Musto, and Reed
(2007)). Similar evidence during the 2008 short-selling ban period shows that option bid-ask
spreads and apparent put-call parity violations of banned stocks were higher than those of
unbanned stocks (Battalio and Schultz (2011), Grundy, Lim, and Verwijmeren (2012), Lin
and Lu (2016)). During this period, marketmakers also asymmetrically adjusted the option
prices of banned stocks by decreasing their call bid prices but increasing their put ask prices
(Battalio and Schultz (2011)). On the theory side, however, there is no existing work to rec-
oncile these findings, nor any work, in that regard, that provides option prices incorporating
short-selling costs in a straightforward manner. Towards this, in this paper, we provide an
analysis of option prices in the presence of costly short-selling. The model we develop leads
to tractable, intuitive, closed-form option prices, and importantly, delivers implications that
support all the empirical evidence discussed above.

Specifically, we adopt the classic Black-Scholes option pricing framework (Black and Sc-
holes (1973)) and incorporate costly short-selling in the underlying stock, following standard
short-selling and stock lending market practices. Short-sellers incur a shorting fee to borrow
shares from investors who are long in the stock. Those investors who are long in the stock
do not necessarily lend all their shares but only a part of them. This partial lending is a
key feature of our analysis and follows from the fact that most stocks in reality have excess

1For instance, Hanson and Sunderam (2014) show that the average short interest ratios for NYSE and
AMEX stocks have more than quadrupled from 1988 to 2011, and Diether, Lee, and Werner (2009) report
that roughly 30% of the trading volume in NYSE and NASDAQ was due to short-selling in 2005. Relatedly,
Saffi and Sigurdsson (2010) report that the amount of global supply of lendable shares in December 2008
was $15 trillion (about 20% of the total market capitalization) and $3 trillion of this amount was lent out
to short-sellers.
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supply of lendable shares (D’Avolio (2002), Saffi and Sigurdsson (2010)). An investor then
effectively pays a different rate for short-selling a share as compared to the rate she earns
from holding a share long. We demonstrate that this difference plays an important role in
option prices and in the ability of our model in supporting the empirical evidence.

We first demonstrate that with costly short-selling, standard no-arbitrage restrictions
alone cannot determine call and put option prices but only lead to lower and upper bounds
for them. Notably, we identify these bounds in terms of Black-Scholes prices. The lower
bounds are the proceeds from the classic hedge portfolio (in the underlying stock and bond
perfectly hedging the options at their maturities) for option buyers, and the upper bounds
the costs of the hedge portfolio for option sellers. The no-arbitrage ranges for option prices
arise because the hedge portfolio costs for option sellers and proceeds for option buyers differ
– one is long while the other is short in the stock. We further show that with costly short-
selling, no-arbitrage call prices are lower and put prices higher than their Black-Scholes model
counterparts. The reason is that call prices are at most the cost of the option sellers’ hedge
portfolios and put prices are at least the proceeds from the option buyers’ hedge portfolios.
Since both portfolios are long in the stock for which there is a benefit, the call option sellers’
hedge portfolio costs are lower and the put option buyers’ hedge portfolio proceeds higher
as compared to those in the Black-Scholes economy.

To obtain unique prices, we impose more structure and introduce option marketmakers
in our framework, following the related literature and the actual marketmaking in exchange-
traded option markets. Marketmakers are competitive and continuously quote bid and ask
option prices that result in zero expected profit from each possible sell or buy order. To hedge
the risk in each order, marketmakers form a hedge portfolio, which is either held until the
option maturity or liquidated prior to that when a subsequent offsetting order arrives. Hence,
each sell or buy order is perfectly hedged at its maturity in two ways, either via a hedge
portfolio or via a subsequent offsetting order. We first obtain an intuitive representation for
option prices with bid and ask prices being the marketmakers’ expected cost of hedging sell
and buy orders, respectively. This is a notable generalization of the Black-Scholes option
prices, which are equal to the cost of their hedge portfolios.

We then obtain unique, closed-form, option bid and ask prices, and show that they
have simple forms in terms of the Black-Scholes prices. Consequently, these option prices
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preserve the well-known, useful properties of the Black-Scholes model, including prices not
depending on investor preferences or the underlying stock mean returns, the signs of option
deltas, gammas, vegas, and rhos all being as in the Black-Scholes model. We also show
that marketmakers quote lower bid-ask spreads than their no-arbitrage ranges by setting
higher bid and lower ask option prices than the respective costs of the hedge portfolios. This
implies that investors have incentives to trade with marketmakers rather than to replicate
the options themselves within our model. This is in contrast to the Black-Scholes model in
which options do not offer any cost advantages over and above their replicating alternatives.
Competitive marketmakers are able to offer these more favorable prices to investors because it
is less costly for them to perfectly hedge their trades through offsetting orders as compared
to hedge portfolios. Furthermore, our closed-form option prices enable us to explore the
implications of costly short-selling in a tractable way and relate them to the documented
empirical evidence, as discussed below.

Looking more closely at the behavior of the unique option prices, we obtain several
noteworthy implications. We find that both the call and put bid-ask spreads are increasing
in the shorting fee for typical options, consistent with empirical evidence (Evans, Geczy,
Musto, and Reed (2007), Lin and Lu (2016)). This is because, an increase in the shorting fee
not only increases short-selling costs but also partially increases the benefit of holding a share
long. Hence, the marginal effect of the shorting fee on hedge portfolios that require short-
selling the stock is greater, leading to higher bid-ask spreads for typical options. We further
show that put bid and ask prices, and hence the put option implied volatilities, are increasing
in the shorting fee since a higher shorting fee increases both the cost of and the proceeds
from the hedge portfolios for a put seller and buyer, respectively, in line with the empirical
evidence (Evans, Geczy, Musto, and Reed (2007), Lin and Lu (2016)). We also show that
implied stock prices decrease in the shorting fee, and hence deviate more from the underlying
stock prices which then lead to higher apparent put-call parity violations, as also empirically
documented (Lamont and Thaler (2003), Ofek, Richardson, and Whitelaw (2004), Evans,
Geczy, Musto, and Reed (2007)). We also provide a novel testable implication that the
call and put bid-ask spreads are decreasing in the partial lending. The difference from the
shorting fee implication arises because an increase in the partial lending only increases the
benefit of holding a share long but has no effect on hedge portfolios that require short-selling
the stock. Finally, we demonstrate that the effects of short-selling costs on option bid-ask
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spreads are more pronounced for relatively illiquid options with lower trading activity. This
occurs because marketmakers are more likely to hedge the relatively illiquid options via
hedge portfolios, through which short-selling costs affect option prices directly.

We then apply our model to the widely-studied 2008 US short-selling ban period, during
which option marketmakers were still allowed to short-sell. The evidence indicates that the
short-selling ban reduced (roughly halved) the short-selling activity while increasing (roughly
doubling) the shorting fee of banned stocks (Boehmer, Jones, and Zhang (2013), Harris,
Namvar, and Phillips (2013), Kolasinski, Reed, and Thornock (2013)). Given that, we first
show that both the call and put bid-ask spreads and apparent put-call parity violations of
banned stocks are higher than those of unbanned stocks, consistent with empirical evidence
(Battalio and Schultz (2011), Grundy, Lim, and Verwijmeren (2012), Lin and Lu (2016)).
We then demonstrate an asymmetric effect of the ban on the option prices of the banned
stocks by showing that the call bid prices decrease more than the ask prices, while the put ask
prices increase more than the bid prices, also consistent with empirical evidence (Battalio
and Schultz (2011)). These results arise because the short-selling ban only affects those
hedge portfolios that are short, but does not affect the ones that are long in the stock as
they earn the same rate per share. This reduces the proceeds from the hedge portfolio for
marketmakers when they buy a call and increases the costs of the hedge portfolio when they
sell a put option, leading to a relatively higher decrease in the call bid while a relatively
higher increase in the put ask prices. This mechanism also leads to higher option bid-ask
spreads and higher apparent put-call parity violations for banned stocks.

Finally, we quantify our model and demonstrate that the effects of short-selling costs on
option prices are economically significant for expensive-to-short stocks (stocks in the highest
shorting fee decile). We also apply our model to the well-publicized event of extreme short-
selling in the Palm stock in 2000, during which there were apparent violations of the law of
one price (Lamont and Thaler (2003)). We demonstrate that roughly half of the observed
price deviations of the Palm stock could be due to the costly short-selling, implying that
the combined effects of all the other risks, costs and considerations could amount to the
remaining half.

There is a large theoretical literature investigating the effects of various market imper-
fections on option prices. These include looking at the effects of taxes (Scholes (1976)),
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transaction costs (Leland (1985), Hodges and Neuberger (1989), Boyle and Vorst (1992),
Bensaid, Lesne, Pagès, and Scheinkman (1992), Edirsinghe, Naik, and Uppal (1993), Davis,
Panas, and Zariphopoulou (1993), Soner, Shreve, and Cvitanić (1995), Constantinides and
Perrakis (2002)), trading constraints including short-selling restrictions (Karatzas and Kou
(1996), Broadie, Cvitanić, and Soner (1998)), different interest rates for borrowing and
lending (Bergman (1995)), funding, collateral and margin requirements (Piterbarg (2010),
Bielecki and Rutkowski (2015), Leippold and Su (2015)). Effective market incompleteness
implied by these imperfections in general leads to no-arbitrage ranges rather than unique
option prices. This is typically addressed, if at all, by introducing a utility maximization
problem which often times leads to complex option prices that depend on investor prefer-
ences. In contrast, the markets are complete in our framework since it is still possible to
perfectly hedge the option payoffs by trading in the underlying stock and the bond. Hence,
standard no-arbitrate restrictions along with a perfectly-hedging marketmaking function suf-
fice to obtain unique closed-form preference-free option bid and ask prices.

More closely related works that study the effects of frictions in the short-selling markets on
option prices are Avellaneda and Lipkin (2009) and Jensen and Pedersen (2016). Avellaneda
and Lipkin study how option prices are affected by the “buy-in” risk that short-sellers may
have to close their short positions prematurely, but do not consider the effects of the shorting
fee and partial lending as we do. On the other hand, Jensen and Pedersen overturns the
classic result of Merton (1973) by showing that in the presence of shorting fees, as well as
margin and funding costs, it may in fact be optimal to exercise an American call option early.
However, differently from our work, their focus is on the optimality of the early exercise of
American options rather than studying the effects of the shorting fee and partial lending on
European options. Moreover, differently from these works, we consider the marketmaking
facility to obtain bid and ask prices for options and relate them to the empirical evidence
on short-selling costs.

The remainder of the article is organized as follows. Section 2 presents our model with
costly short-selling and Section 3 introduces option marketmakers and provides the unique
bid and ask prices. Section 4 investigates the behavior of the option prices, and Section 5
the 2008 short-selling ban and the quantitative analysis. Section 6 concludes. Appendix A
contains the proofs and Appendix B provides additional quantitative analysis.
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2 No-Arbitrage Option Prices with Costly Short-Selling

In this Section, we adopt the classic Black-Scholes framework and incorporate costly short-
selling in the underlying stock. Short-sellers incur a shorting fee to borrow shares from
investors who are long in the stock. Those investors who are long in the stock do not
necessarily lend all their shares but only a part of them. We demonstrate that with costly
short-selling, option prices that admit no-arbitrage fall within a range, for which we identify
its bounds to be in terms of Black-Scholes prices.

2.1 Economy with Costly Short-Selling

In the classic Black-Scholes economy, the securities market includes a riskless bond and a
(non-dividend paying) stock whose price processes B and S follow

dBt = Btrdt, (1)

dSt = St [µdt+ σdωt] , (2)

where r is the constant riskless interest rate, µ and σ are the constant mean return and the
return volatility of the stock, respectively, and ω is a standard Brownian motion. Trading
in these securities is unrestricted. That is, there are no taxes, transaction costs, restrictions
on borrowing, and in particular short-selling the stock is costless.

We incorporate short-selling costs into this economy by following standard short-selling
and stock lending market practices. Short-sellers borrow shares from investors who are long
in the stock. All short-selling proceeds are kept as collateral in an account that earns the
riskless interest rate r. This interest income is shared between the lender and the short-
seller. The lender’s account earns the shorting fee rate φ > 0, and the short-seller’s account
earns the rebate rate r − φ.2 On the other hand, investors who are long in the stock do not
necessarily lend all their shares but only a fraction 0 ≤ α < 1 of them, where henceforth,

2Note that the rebate rate can be negative and the rate short-sellers are effectively paying to lenders is
the shorting fee φ as it is the foregone interest rate for them. The exact mechanics of stock short-selling are
somewhat more involved but its essentials are captured by our formulation above (see Reed (2013) for an
extensive discussion of short-selling). We discuss how to adjust our model for additional considerations in
these markets in Remark 1.
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we refer to α as the partial lending parameter. The partial lending feature follows from the
fact that most stocks in reality have excess supply of lendable shares (D’Avolio (2002), Saffi
and Sigurdsson (2010)). Hence, even if investors attempt to do so, they may not be able to
successfully lend all their long stock positions.3 In sum, an investor effectively pays a rate φ
for short-selling a share but only earns the rate αφ from holding a stock share long in our
economy with costly short-selling.4 We demonstrate that the difference between the cost of
short-selling and the benefit of holding a share long plays an important role in option prices
and in the ability of our model in supporting the empirical evidence.

2.2 No-Arbitrage Option Prices

We consider standard European-style call and put options written on the stock with a strike
price K and a maturity date T . For the call the buyer’s payoff is max {ST −K, 0} and the
seller’s −max {ST −K, 0}, while for the put the buyer’s payoff is max {K − ST , 0} and the
seller’s −max {K − ST , 0} at the maturity date. An option price is said to admit arbitrage
if the investors can form a self-financing portfolio to obtain a strictly positive initial profit
with zero payoff at the option maturity by trading at that option price.5 In the classic Black-
Scholes economy without costly short-selling, the no-arbitrage restriction alone is sufficient to
uniquely determine the option prices, given by the cost of the hedge portfolio, a self-financing
portfolio in the underlying stock and the riskless bond which perfectly hedges (offsets) the
option seller’s payoff at the maturity date. Proposition 1 reports the no-arbitrage option
prices in our economy.

3The partial lending feature can also be justified due to the standard equilibrium condition for security
markets, that is, since short-sellers need to sell the shares back to other long holders, not every long position
can be lent to short-sellers in equilibrium. As for the size of the excess supply, Saffi and Sigurdsson (2010)
report that the amount of global supply of lendable shares in December 2008 was $15 trillion (about 20% of
the total market capitalization) and only $3 trillion of this amount was actually lent out. Saffi and Sigurdsson
also report that the average fraction of outstanding shares lent out in their sample was 8.91% for the US
and 5.75% for the world, which could proxy our partial lending parameter for a typical stock.

4Note that the short-seller pays the shorting fee to the lender over time until the short position is closed.
This is in contrast to the commonly considered financial friction of (proportional) transaction costs in which
the cost is incurred only when a trade takes place.

5This arbitrage definition is sufficient for our purposes and follows from its more formal definition in
standard textbooks (e.g., Duffie (2001)).
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Proposition 1 (No-arbitrage option prices). In the economy with costly short-selling,
no-arbitrage call and put prices, Ct and Pt, satisfy

CBS
t (φ) ≤ Ct ≤ CBS

t (αφ) , (3)

PBS
t (αφ) ≤ Pt ≤ PBS

t (φ) , (4)

where CBS
t (q) and PBS

t (q) denote the standard Black-Scholes call and put prices adjusted
for the constant dividend yield q, respectively, and are given by

CBS
t (q) = Ste

−q(T−t)Φ (d1 (q))−Ke−r(T−t)Φ (d2 (q)) , (5)

PBS
t (q) = −Ste−q(T−t)Φ (−d1 (q)) +Ke−r(T−t)Φ (−d2 (q)) , (6)

where Φ (.) is the standard normal cumulative distribution function and

d1 (q) =
ln (St/K) +

(
r − q + 1

2σ
2
)

(T − t)
σ
√
T − t

, and d2 (q) = d1 (q)− σ
√
T − t. (7)

In the special case of full lending (α = 1), no-arbitrage call and put prices are unique and
given by

Ct = CBS
t (φ) , Pt = PBS

t (φ) . (8)

Consequently, in the economy with costly short-selling,

i) The call price upper bound is decreasing in both the shorting fee φ and partial lending
α, while its lower bound is decreasing in the shorting fee φ but is not dependent on the
partial lending α.

ii) The put price upper bound is increasing in the shorting fee φ but is not dependent on
the partial lending α, while its lower bound is increasing in both the shorting fee φ and
partial lending α.

iii) The call prices are lower, while the put prices are higher than the corresponding prices
in the Black-Scholes model without costly short-selling.

Proposition 1 shows that with costly short-selling, the no-arbitrage restriction alone is not
sufficient to determine option prices uniquely. Call and put prices that admit no-arbitrage
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now fall within a range whose bounds are identified in terms of Black-Scholes prices. The
upper bounds in (3)–(4) are the costs of the hedge portfolio (the self-financing portfolio
in the underlying stock and the riskless bond which perfectly hedges the option payoff at
the maturity date) for option sellers. If options are traded at prices higher than these upper
bounds then they admit arbitrage, because selling the option and forming the hedge portfolio
at a lower cost leads to a positive initial profit with no payoff at the option maturity date.
The lower bounds in (3)–(4) are the proceeds from the hedge portfolio for option buyers
and differ from the upper bounds. If options are traded at prices lower than these lower
bounds then they admit arbitrage, since buying the option and receiving a higher amount
by forming the hedge portfolio leads to a positive initial profit with no payoff at the option
maturity date. On the other hand, if options are traded at prices within these ranges then
they admit no-arbitrage, since selling or buying the option and forming the hedge portfolio
can lead to a zero initial profit at most.6

With costly short-selling, these ranges for no-arbitrage option prices arise because the cost
of short-selling (φ) and the benefit of holding a share long (αφ) are not the same. Therefore,
the cost of the hedge portfolio for option sellers and the proceeds from the hedge portfolio
for option buyers are different, as when one hedge portfolio is long while the other is short
in the underlying stock. This is in contrast to the classic Black-Scholes economy without
costly short-selling, as well as the special case of full lending in our economy (α = 1) as (8)
illustrates, for which no-arbitrage option prices are unique. Uniqueness is due to the fact
that the cost of short-selling and the benefit of holding a share long are the same and equal
to either zero (Black-Scholes economy) or to the shorting fee (full lending in our economy).

Turning to the roles of the shorting fee φ and partial lending α, we see that the call price
upper bound CBS

t (αφ) is decreasing in both the shorting fee and partial lending (property
(i)). As discussed above, this upper bound is the cost of the call option seller’s hedge
portfolio that is long in the underlying stock. Therefore, an increase in either the shorting
fee or partial lending increases the benefit of holding a share long, which reduces the cost of

6As we demonstrate in Table 4 of Appendix B, these no-arbitrage bounds may significantly differ from the
Black-Scholes prices. For instance, for a 3-month, at-the-money option written on the typical stock in the
highest shorting fee decile of Drechsler and Drechsler (2016), the lower bound for the call option is 11.22%
lower than and the upper bound for the put option is 10.46% higher than the corresponding call and put
prices in the Black-Scholes model.
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the hedge portfolio. On the other hand, the call price lower bound CBS
t (φ) is the proceeds

from the call option buyer’s hedge portfolio that is short in the underlying stock. Therefore,
an increase in the shorting fee reduces the proceeds. Moreover, as the hedge portfolio is short
in the underlying stock, partial lending does not affect it (property (i)). Similar arguments
also lead to the put price upper bound PBS

t (φ) being increasing in the shorting fee but not
being affected by partial lending, and its lower bound PBS

t (αφ) being increasing in both the
shorting fee and partial lending (property (ii)).

A notable implication here is that the call price is lower and the put price higher than
those in the Black-Scholes model without costly short-selling (property (iii)). The intuition
is as follows. A call price is at most the cost of the option seller’s hedge portfolio that is
long in the stock. Similarly, a put price is at least the proceeds from the option buyer’s
hedge portfolio that is also long in the stock. Since there is a benefit of holding the stock
long, the call option seller’s hedge portfolio cost is lower and the put option buyer’s hedge
portfolio proceeds are higher as compared to those in the Black-Scholes economy without
costly short-selling. Hence, with costly short-selling, a call price is at most less than and the
put price is at least more than the corresponding prices implied by the Black-Scholes model.
Note that, this can also be seen from our earlier results with respect to the shorting fee φ in
properties (i)–(ii), along with the fact that the Black-Scholes prices arise as a special case of
our model with zero shorting fee (φ = 0).

Remark 1 (Additional considerations). To highlight our results as clearly as possible,
we did not consider several possible issues, but they can easily be incorporated into our
analysis. First, our model can be extended to a setting in which the stock pays a constant
dividend yield δ, by adding it to both the shorting fee φ and the lending income αφ. For in-
stance, a call price that admits no-arbitrage would satisfy CBS

t (φ+ δ) ≤ Ct ≤ CBS
t (αφ+ δ).

Second, in our formulation 100% of the short-selling proceeds are kept as collateral. This
rate is very close to the actual practice in the US for domestic stocks, as Reed (2013) reports
lenders typically require 102% of the short-selling proceeds as a collateral to help protect
themselves. Our model can be generalized to any constant collateral rate κ by simply multi-
plying the shorting fee φ by κ. For instance, in this case a call price that admits no-arbitrage
satisfies CBS

t (φκ) ≤ Ct ≤ CBS
t (αφκ). Third, in our model the lender gets all of the shorting

fee φ upon successfully lending a share. In reality, this is true for some large institutions with
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internal lending departments which directly lend to short-sellers. Other lenders typically use
an agent bank/brokerage and get only a fraction of the shorting fee, with the rest going to
the agent bank/brokerage for providing this service. Reed (2013) reports that these lenders
typically get 75% of the shorting fee. Incorporating this feature into our model is straightfor-
ward by multiplying the partial lending parameter α by a constant fraction γ capturing the
lender’s share of shorting fee. For instance, in this case a call price that admits no-arbitrage
satisfies CBS

t (φ) ≤ Ct ≤ CBS
t (αγφ).

In our analysis, we only consider standard call and put options as most of the empirical ev-
idence on the effects of costly short-selling is on these. Our analysis, however, is equally valid
for other European-style derivatives whose payoffs are monotonically either non-decreasing
or non-increasing in the underlying stock, such as forward contracts. Moreover, to keep
our analysis comparable to the Black-Scholes economy with constant parameters, we take
the shorting fee φ and partial lending parameter α to be constants. In reality, the levels of
shorting fee and partial lending are likely time varying. Introducing time-variation in these
parameters may be addressed by the methodologies employed in option pricing with stochas-
tic dividend yields (e.g., Geske (1978), Broadie, Detemple, Ghysels, and Torrés (2000)).

3 Option Bid and Ask Prices with Marketmakers

As the previous Section illustrates, with costly short-selling, standard no-arbitrage restric-
tions alone cannot determine option prices but only lead to lower and upper bounds for
them. To obtain unique prices, one would need to impose more structure on the economy.
Towards that, in this Section we introduce option marketmakers and obtain unique bid and
ask option prices. We show that option prices have simple forms, in terms of the famil-
iar Black-Scholes prices, and inherit the well-known, useful properties of the Black-Scholes
model. This analysis also enables us to explore the implications of costly short-selling in a
tractable way and relate them to the documented empirical evidence as shown in Section 4.

We incorporate option marketmakers in our framework following the actual marketmak-
ing for exchange-traded option markets, such as the CBOE, as well as the related literature.7

7Options traded in the over-the-counter markets would involve other issues such as search costs and
bargaining (e.g., Duffie, Gârleanu, and Pedersen (2005, 2007)) that are not the main focus of our analysis.
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There are numerous competitive option marketmakers who stand ready to buy and sell op-
tions to fulfill investor orders, and hence facilitate trading at any point in time. Marketmakers
continuously quote bid and ask option prices that result in zero expected profit for each pos-
sible trade.8 Since fulfilling investor orders may generate arbitrary (and adverse) positions
for marketmakers, marketmakers attempt to hedge the risk in each order by forming a hedge
portfolio. The hedge portfolio is either held until the option maturity or liquidated prior
to that when a subsequent offsetting order arrives (e.g., a current call buy order’s offsetting
order is a subsequent call sell order) as the latter also perfectly hedges the incoming order
at its maturity. Hence, each sell or buy order is perfectly hedged at its maturity in two
ways, either via a hedge portfolio or via a subsequent offsetting order. The first way of
hedging risk is what makes options marketmaking different from that in other markets, and
as discussed in Section 2 this hedging can still be achieved perfectly in our economy with
costly short-selling. The second way, matching offsetting orders, is the more familiar one in
marketmaking, particularly for equities.9

We model the arrival of offsetting (buy or sell) orders in a simple way as in Bollen, Smith,
and Whaley (2004), which in turn is based on the classic microstructure model of Garman
(1976). At each time t, the arrivals of offsetting trades have mutually independent exponen-
tial distributions with (positive) parameters λCs, λCb, λPs, λPb, representing the arrival rates
of an offsetting call sell, call buy, put sell, put buy order, respectively.10 These arrival rates

8Setting prices such that each option trade yields zero expected profit follows from the competitive
marketmaking assumption and is consistent with the literature on option marketmakers (Easley, O’Hara,
and Srinivas (1998), Johnson and So (2012)). We discuss other possible features of option marketmaking
within our framework in Remark 2.

9As is well-recognized in the literature, option marketmakers have a greater need for hedging their po-
sitions as compared to equity marketmakers. This is because they face far greater inventory holding costs
due to higher illiquidity, and implicit leverage of options result in higher and stochastic volatilities (e.g.,
Jameson and Wilhelm (1992), Cho and Engle (1998), Muravyev (2016)). They also face far greater order
imbalances as compared to those in underlying stocks (Lakonishok, Lee, Pearson, and Poteshman (2007)),
which can be attributed to inventory risk (Muravyev (2016)). In our model inventory risk does not play
a role since marketmakers immediately form a hedge portfolio for each order (availability of second way of
perfect hedging).

10The arrivals of offsetting orders are also independent from the Brownian motion ω in the underlying stock
price dynamics (2). The exponential distribution is commonly used to model the time between the occurrence
of events and arises as the distribution of the interarrival times of a Poisson process. For an exponential
distribution with parameter λ, the expected arrival time is given by 1/λ. The exponential distribution has
the useful “memoryless property”, implying that the distribution of the arrival time is independent from the
waiting time that has already occurred. In our setting, this allows us to proceed at each time t without

12



are inherently related to liquidity as one may argue that the more liquid options, which have
higher buying/selling activity, are more likely to have higher offsetting order arrival rates
(or, equivalently, lower expected arrival times for offsetting orders). We explore the effects
of buying/selling activity in Section 4 (Proposition 5). The respective distribution functions
of offsetting orders are denoted by FCs, FCb, FPs, FPb, which along with the objective of mar-
ketmakers given above are sufficient to determine the option prices as follows. First, the
marketmakers compute the current value of profits from each case depending on whether an
offsetting order arrives by the option maturity or not. Then, they find the expected profits
by taking a weighted average of these profits, where the weights are the probabilities of each
case occurring and are characterized by the distribution functions FCs, FCb, FPs, FPb. For
instance, while determining the call ask price at time t, the probability of no offsetting call
sell order arriving by time T is 1−

´ T
t
dFCs (u) , and used as the weight for that case. Finally,

they set the option bid and ask prices so that the expected profit is zero. Determining the
bid and ask prices this way results in the expected cost of perfect hedging representations
for option prices as reported in Lemma 1.

Lemma 1 (Expected cost of hedging representation). In the economy with costly
short-selling and marketmakers, the call bid and ask prices satisfy

CBid
t =

ˆ T

t

{
CBS
t (φ) + Vt

[
CAsk
u − CBS

u (φ)
]}
dFCb (u) + CBS

t (φ)
(
1−
ˆ T

t

dFCb (u)
)
, (9)

CAsk
t =

ˆ T

t

{
CBS
t (αφ)− Vt

[
CBS
u (αφ)− CBid

u

]}
dFCs (u) + CBS

t (αφ)
(
1−
ˆ T

t

dFCs (u)
)
.(10)

Similarly, the put bid and ask prices satisfy

PBid
t =

ˆ T

t

{
PBS
t (αφ) + Vt

[
PAsk
u − PBS

u (αφ)
]}
dFPb (u) + PBS

t (αφ)
(
1−
ˆ T

t

dFPb (u)
)
,(11)

PAsk
t =

ˆ T

t

{
PBS
t (φ)− Vt

[
PBS
u (φ)− PBid

u

]}
dFPs (u) + PBS

t (φ)
(
1−
ˆ T

t

dFPs (u)
)
, (12)

where Vt [Xu] denotes the time-t value of the payoff Xu at time u ≥ t, and the Black-Scholes
call and put prices, CBS

t (.) and PBS
t (.), are as in (5)−(6) of Proposition 1.

keeping track of how long one has already waited for the offsetting order.
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Lemma 1 indicates that in the economy with costly short-selling and marketmakers,
option bid and ask prices are given by the marketmakers’ expected cost of hedging sell and
buy orders, respectively. This is because the first terms in option prices (9)–(12) are the
(weighted) current values of the subsequent offsetting orders (which would perfectly hedge
the option in question). The second terms in (9)–(12) are the (weighted) current costs of
the hedge portfolios involving the underlying stock (which would also perfectly hedge the
option). Summing these two weighted hedging costs, where the weights are given by the
distribution functions of offsetting order arrival times, yields the expected cost of hedging
representation. In particular, consider the call ask price representation in (10). It is the
marketmakers’ expected cost of hedging a call option sold at time t (upon the arrival of
a buy order at time t), where the expectation is taken with respect to the uncertainty
about the offsetting call sell order arrival time given by the distribution function FCs. The
quantity CBS

t (αφ)−Vt [CBS
u (αφ)− CBid

u ] in the first term is the value (cost) of the subsequent
offsetting call sell order if it arrives at time u ≥ t, and the quantity CBS

t (αφ) in the second
term is the cost of the hedge portfolio in the underlying stock. That is, to hedge a call option
sold at time t, the marketmaker immediately forms the hedge portfolio at a cost CBS

t (αφ).
If an offsetting call sell order arrives at a subsequent time u < T , the marketmaker buys
(and keeps) this offsetting option at a price CBid

u and liquidates the hedge portfolio for a
value CBS

u (αφ). This way the marketmaker hedges via a subsequent offsetting call sell order
at a cost CBS

t (αφ)− Vt [CBS
u (αφ)− CBid

u ]. If an offsetting call sell order does not arrive by
maturity date T , the marketmaker hedges via the hedge portfolio at the cost CBS

t (αφ).11

This expected cost of hedging representation is a notable generalization of the standard
Black-Scholes model in which option prices are equal to the cost of their hedge portfolios.
Even though this representation for option prices is simple and intuitive, to the best of our
knowledge it has not been explored previously in the literature with market imperfections.

We note that the lower and upper no-arbitrage bounds for option prices in Proposition 1
(Section 2) arise as the bid and ask prices in the special case when there is no possibility of an
offsetting trade. This is intuitive since then the marketmakers can only hedge the options via

11Note that the current value operator Vt [Xu] gives the amount required at time-t to form a self-financing
portfolio in the underlying stock and the riskless bond to obtain the payoff Xu at time u ≥ t. Since there is
a difference between the cost of short-selling and the benefit of holding a share long, one needs to account
for the sign of the payoff Xu while determining its current value as we show in the Appendix.
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hedge portfolios, and so they set the option prices equal to the cost of these hedge portfolios.
For instance, when there is no possibility of an offsetting call sell order (λCs = 0), the call
ask price in (10) coincides with the no-arbitrage upper bound CAsk

t = CBS
t (αφ) as this is

the cost of the hedge portfolio for a call option seller (Section 2). Similarly, when there is
no possibility of an offsetting call buy order (λCb = 0), the no-arbitrage lower bound arises
as the call bid price CBid

t = CBS
t (φ). For the general case with the possibility of offsetting

orders, we need to solve the coupled systems (9)–(10) for the call option, and (11)–(12) for
the put option, in which the current bid and ask prices depend on the future prices of the
other. Solving the above coupled systems involve substituting conjectured (and later verified)
bid and ask prices into these systems, differentiating, and solving the resulting systems of
two linear first order differential equations simultaneously as shown in the Appendix. This
procedure yields the closed-form solutions for the call and put option bid and ask prices, as
reported in Proposition 2.

Proposition 2 (Option bid and ask prices). In the economy with costly short-selling
and marketmakers, the call bid and ask prices are given by

CBid
t = (1− wt,CBid)CBS

t (αφ) + wt,CBidCBS
t (φ) , (13)

CAsk
t = wt,CAskCBS

t (αφ) + (1− wt,CAsk)CBS
t (φ) , (14)

and the put bid and ask prices are given by

PBid
t = (1− wt,PBid)PBS

t (φ) + wt,PBidPBS
t (αφ) , (15)

PAsk
t = wt,PAskPBS

t (φ) + (1− wt,PAsk)PBS
t (αφ) , (16)

where the Black-Scholes call and put prices, CBS
t (.) and PBS

t (.), are as in (5)–(6) of Propo-
sition 1. The weights for the call bid and ask prices wt,CBid and wt,CAsk are given by

wt,CBid = λCs
λCs + λCb

+ λCb
λCs + λCb

e−(λCs+λCb)(T−t), (17)

wt,CAsk = λCb
λCs + λCb

+ λCs
λCs + λCb

e−(λCs+λCb)(T−t), (18)
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and the weights for the put bid and ask prices wt,PBid and wt,PAsk are given by

wt,PBid = λPs
λPs + λPb

+ λPb
λPs + λPb

e−(λP s+λP b)(T−t), (19)

wt,PAsk = λPb
λPs + λPb

+ λPs
λPs + λPb

e−(λP s+λP b)(T−t). (20)

Proposition 2 reveals that unique option prices (13)–(16) are weighted-averages of their
respective no-arbitrage bounds, which in turn are identified in terms of the Black-Scholes
prices (Section 2).12 These simple representations not only make the option prices easy to
compute, but also make them preserve the well-known and widely-employed properties of
Black-Scholes prices. In particular, option prices do not depend on investor preferences and
the underlying stock mean return µ. Moreover, the signs of the so-called option Greeks, delta,
vega, and rho which capture the sensitivities of option prices to the underlying stock price St,
volatility σ and interest rate r, respectively, as well as the gamma capturing the sensitivity
of delta to the underlying stock price, are the same as in the Black-Scholes model.13 We
see that the weights for bid and ask prices (17)–(20) are driven by the arrival rates of both
the buy and sell orders, rather than only by the arrival rate of a respective offsetting order.
This follows from the fact that the closed-form option prices (13)–(16) are solutions to their
respective counterparts (9)–(12) in Lemma 1. There we can see that the current bid and ask
prices depend on the future ask and bid prices, respectively, and hence the arrival rates of
offsetting sell and buy orders both affect the prices through these weights.

As discussed earlier, in the special case when there is no possibility of an offsetting order,
option bid and ask prices become the lower and upper no-arbitrage bounds, respectively.
However, when there is the possibility of offsetting orders, option bid and ask prices lie strictly
within their no-arbitrage bounds. That is, marketmakers quote lower bid-ask spreads than
their no-arbitrage ranges, by setting higher bid and lower ask prices than the respective costs
of the hedge portfolios. This is notable as it implies that investors now have incentives to
trade with marketmakers rather than to replicate the option payoffs themselves via a portfolio
in the underlying stock and the riskless bond, since this way they can sell the same payoff at

12As discussed in Section 2, the no-arbitrage upper bounds are the costs of the hedge portfolio for option
sellers, and the lower bounds are the proceeds from the hedge portfolio for option buyers.

13The sign of the theta, which captures the sensitivity of option prices to time to maturity, is ambiguous
as in the Black-Scholes model itself.
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a higher price and buy it at a lower price. This is in contrast to the Black-Scholes model in
which options do not offer any cost advantages over and above their replicating alternatives
constructed with the underlying stock and riskless bond. Competitive marketmakers are
able to offer these more favorable prices to investors because it is less costly for them to
perfectly hedge their trades through offsetting orders as compared to hedge portfolios. For
instance, marketmakers sell the call option at its ask price (14), which is lower than the cost
of its hedge portfolio, CBS

t (αφ). They are willing to do so as there is also the possibility
to perfectly hedge the call option sold by buying a call option at a bid price in the future
whose current value is less than CBS

t (αφ), the no-arbitrage upper bound. This reduces the
expected cost of perfect hedging a call option sold and leads to a lower call ask price. In
addition to offering cost advantages, the possibility of offsetting orders makes the partial
lending matter for both the bid and ask option prices. In the special case of there being no
possibility of an offsetting order, partial lending does not affect call bid and put ask prices,
as the marketmakers’ hedge portfolios for buying a call and selling a put are short in the
underlying stock. However, with the possibility of offsetting orders, marketmakers also take
into account of future offsetting orders whose hedge portfolios are long in the underlying
stock, making all prices depend on partial lending.

Remark 2 (Other features of option marketmaking). To obtain our results, we have
considered the key features of option marketmaking, and have not incorporated other possible
features so as to not unnecessarily confound or complicate our analysis. First, in our model
option trades are due to market orders and occur at a fixed size as in Easley, O’Hara, and
Srinivas (1998) and Muravyev (2016). Without loss of generality we normalize the trade sizes
to one for convenience. Moreover, considering market orders and not additionally the more
complex limit orders, which are dependent on prices, turn out to be enough for our analysis
and main message. Second, while matching current orders by subsequent offsetting orders,
marketmakers do not partially hedge and only classify those orders with the same strike and
maturity as offsetting (e.g., a call buy order is matched by a subsequent call sell order with the
same strike and maturity). This is because options with different strikes or maturities would
not perfectly hedge the current option at its maturity, and hence expose the marketmaker
to market risk. This in turn would require additional assumptions on the marketmakers’
risk attitude to proceed. Moreover, introducing partial hedging by considering multiple
options with different strikes and maturities would significantly complicate the analysis as
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the Black-Scholes prices are not linear in strike or maturity. Third, to study the effects
of costly short-selling in a simple framework that is as close as possible to the standard
symmetric information Black-Scholes economy, we do not consider information asymmetry
between marketmakers and investors which may also affect the option bid and ask prices as
demonstrated in Easley, O’Hara, and Srinivas (1998).

In our model, while determining the current option bid and ask prices, marketmakers
always use a subsequent offsetting order to perfectly hedge a current order rather than
forming a hedge portfolio for the subsequent order also. This is because, an attempt to form
a hedge portfolio for the subsequent offsetting order leads to lower profits, and hence to a
suboptimal strategy for them. For instance, as discussed earlier and also demonstrated in
the proof of Lemma 1 in the Appendix, while determining the current call ask price, if an
offsetting call sell order arrives at a subsequent time u < T , the marketmaker buys this
offsetting call option at a bid price CBid

u and liquidates the hedge portfolio for the current
option at a value CBS

u (αφ). However, if the marketmaker were to hedge the offsetting order
via a new hedge portfolio by also keeping its existing hedge portfolio until maturity, this
strategy would lead to a lower profit. This is because now it is not liquidating the initial
hedge portfolio for CBS

u (αφ) but instead receiving less CBS
u (φ) to perfectly hedge the call

option bought at time u which requires short-selling the underlying stock.

4 Behavior of Option Bid and Ask Prices

In this Section, we investigate the behavior of the option prices obtained in Section 3 in terms
of the shorting fee, partial lending and the arrival rates of offsetting orders. Consistent with
empirical evidence, we first show that both the call and put bid-ask spreads are increasing
in the shorting fee for typical options. We then demonstrate that the stock prices implied by
the option prices decrease in the shorting fee, and hence deviate more from the underlying
stock prices which then lead to higher apparent put-call parity violations, as also empirically
documented. Furthermore, we provide a novel testable implication that call and put bid-ask
spreads are decreasing in the partial lending. We also show that the effects of short-selling
costs on option bid-ask spreads are more pronounced for relatively illiquid options with lower
trading activity.
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In this Section, in addition to presenting the effects of costly short-selling on option
prices, we also present our results for the (options) implied stock prices using the well-known
put-call parity relation, which yields the implied stock bid and ask prices as

S̃Bidt ≡ CBid
t − PAsk

t +Ke−r(T−t), (21)

S̃Askt ≡ CAsk
t − PBid

t +Ke−r(T−t). (22)

That is, an investor selling the call at the bid price CBid
t , buying the put at the ask price

PAsk
t , and selling the riskless bond of an amount Ke−r(T−t) obtains the payoff −ST at

option maturity. This strategy is equivalent to selling the stock short, but without paying
the shorting fee prior to the option maturity date, and yields the implied stock bid price
(21). Similarly, an investor buying the call at the ask price CAsk

t , selling the put at the
bid price PBid

t , and buying the riskless bond of an amount Ke−r(T−t) obtains the payoff
ST at option maturity. This strategy is equivalent to holding the stock long, but without
receiving the lending benefits prior to the option maturity date, and costs the implied stock
ask price (22).14 The implied stock bid and ask prices (21)–(22) allow us to relate our
results to the documented evidence on the effects of costly short-selling on apparent put-call
parity violations, which are typically measured as percentage deviations of implied stock
prices from the underlying stock price (e.g., Ofek, Richardson, and Whitelaw (2004), Evans,
Geczy, Musto, and Reed (2007)). Proposition 3 reports the effects of the shorting fee on the
call and put prices, and on the implied stock price.

Proposition 3 (Effects of shorting fee). In the economy with costly short-selling and
marketmakers,

i) The call bid and ask prices are decreasing, while the put bid and ask prices are increasing
in the shorting fee φ.

ii) Both the call and put bid-ask spreads are increasing in the shorting fee φ when αe(1−α)φ(T−t) <

Φ (d1 (φ)) /Φ (d1 (αφ)).

iii) The implied stock bid and ask prices are decreasing in the shorting fee φ.
14Empirical works typically adjust the implied stock bid and ask prices (21)–(22) by also adding suitable

terms to the right hand sides to account for the interim dividends and the early exercise feature of American
options in their sample (e.g., Ofek, Richardson, and Whitelaw (2004), Battalio and Schultz (2011)).
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Proposition 3 reveals that the call bid and ask prices are decreasing, while the put bid and
ask prices are increasing in the shorting fee φ (property (i)). This is because option prices
(13)–(16) are weighted-averages of their respective no-arbitrage upper and lower bounds,
which are the costs of and proceeds from the hedge portfolio for option sellers and buyers,
respectively (Proposition 1). A higher shorting fee reduces both the cost of the hedge port-
folio for a call seller as it increases the benefit of holding a share long, and also the proceeds
from the hedge portfolio for a call buyer as it increases the cost of short-selling (Proposition
1, property (i)). This mechanism leads to lower call ask and bid prices. In contrast, a higher
shorting fee increases both the cost of the hedge portfolio for a put seller as it increases
the cost of short-selling, and also the proceeds from the hedge portfolio for a put buyer as
it increases the benefit of holding a share long, leading to higher put bid and ask prices.
One immediate consequence of this result is that the higher the shorting fee, the lower the
call implied volatility and the higher the put implied volatility, where we here employ the
standard approach of inverting the Black-Scholes formula using the option prices (13)–(16)
as inputs. This finding is in line with the empirical evidence in Evans, Geczy, Musto, and
Reed (2007) and Lin and Lu (2016), which demonstrate that put implied volatilities are
increasing in the shorting fee.15

Even though the call bid and ask prices are decreasing, while those of the put are in-
creasing, both the call and put bid-ask spreads are increasing in the shorting fee φ for typical
options and realistic values of shorting fee and partial lending (property (ii)). The condition
given in the property is equivalent to a higher shorting fee reducing the cost of the hedge
portfolio for a call seller less than the proceeds from the hedge portfolio for a call buyer (see
(A.39) in the Appendix). This condition arises because an increase in the shorting fee not
only increases short-selling costs but also increases the benefit of holding a share long par-
tially, and call prices decrease convexly in these costs and benefits. Hence, for relatively low
levels of short-selling costs, this condition is satisfied as the call option seller is affected only
partially. However, for extremely high levels of short-selling costs this relation may reverse,
as the call option buyer’s hedge portfolio proceeds may decrease less due to convexity. As we
demonstrate in our quantitative analysis in Section 5, this condition is satisfied for option
contracts with typical (e.g., short) maturities and realistic (e.g., low) values of shorting fee

15We demonstrate the magnitude of this effect in our quantitative analysis of Section 5.
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and partial lending. We then have the result that option bid-ask spreads are increasing in
the shorting fee, as empirically documented by Evans, Geczy, Musto, and Reed (2007) and
Lin and Lu (2016).16

Turning to the implied stock prices, we see that, the higher the shorting fee φ, the lower
the implied stock bid and ask prices (property (iii)), and hence, the higher their deviations
from the underlying stock price. This is because, as we discussed earlier, the strategy that
yields the implied stock bid price (21) is equivalent to selling the stock short, but without
paying the shorting fee prior to the option maturity date. Hence, by no-arbitrage, the implied
stock bid price must be lower than the underlying stock price. Similarly, the strategy that
costs the implied stock ask price (22) is equivalent to holding the stock long, but without
receiving the lending benefits prior to the option maturity date. Hence, by no-arbitrage, the
implied stock ask price must be lower than the underlying stock price. A higher shorting
fee being associated with higher apparent put-call parity violations is well-supported by the
empirical evidence, as in Lamont and Thaler (2003), Ofek, Richardson, and Whitelaw (2004),
Evans, Geczy, Musto, and Reed (2007). However, at this point it is useful to highlight that
in our economy, option bid and ask prices lie within their respective no-arbitrage bounds
presented in Section 2. Therefore, the implied stock prices being less than the underlying
stock price does not necessarily imply arbitrage.

Proposition 4 (Effects of partial lending). In the economy with costly short-selling and
marketmakers,

i) The call bid and ask prices are decreasing, while the put bid and ask prices are increasing
in the partial lending α.

ii) Both the call and put bid-ask spreads are decreasing in the partial lending α.

Proposition 4 reveals that the call bid and ask prices are decreasing, while those of the
put are increasing in the partial lending α (property (i)). The intuition is somewhat similar

16Conversely, for this condition to not hold, the option maturity would need to be long, e.g., over a year,
and also the shorting fees and partial lending must be unrealistically high simultaneously, e.g., higher than
40% each. However, the exchange-traded options typically have far shorter maturities and stock shorting
fees are a lot lower. For instance, the median option maturity in the full sample of Ofek, Richardson, and
Whitelaw (2004) is 115 days, and the typical stock in the highest shorting fee decile has a shorting fee of
6.96% in the sample of Drechsler and Drechsler (2016).
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to that of the shorting fee discussed in Proposition 3. Increasing partial lending reduces the
cost of the hedge portfolio for a call seller, while increasing the proceeds from the hedge
portfolio for a put buyer, since it increases the benefit of holding a share long in these hedge
portfolios. However, increasing partial lending has no effect on the hedge portfolio for a call
buyer and the put seller since their hedge portfolios require short-selling the stock. This
then decreases the call bid and ask prices and increases the put bid and ask prices since they
are weighted-averages of the costs of and proceeds from these hedge portfolios (Proposition
2). Again, the immediate consequence of this result is that the higher the partial lending,
the lower the call implied volatility and the higher the put implied volatility.

We see that both the call and put bid-ask spreads are decreasing in the partial lending
α (property (ii)). This is in contrast to the earlier shorting fee result that option bid-
ask spreads are increasing in the shorting fee for typical options (Proposition 3(ii)). This
difference arises because partial lending only affects the hedge portfolio that is long in the
stock and has no effect on the hedge portfolio that requires short-selling the stock, leading
to an unconditional, simpler result. Therefore, a higher partial lending reduces the call ask
price more than the call bid price since the hedge portfolio for a call seller requires holding
a share long, resulting in a lower no-arbitrage range, and thus a lower call bid-ask spread.
Similarly, a higher partial lending increases the put bid price more than the put ask bid price
since the hedge portfolio for a put buyer requires holding a share long, leading to a lower
no-arbitrage range, and thus a lower put bid-ask spread. To our knowledge, the opposite
effect of partial lending from the shorting fee on option bid-ask spreads is a new prediction
and has not been empirically explored.

As discussed in Section 3, the offsetting order arrival rates are inherently related to option
liquidity. That is, the more liquid options with higher buying/selling activity are more likely
to have higher offsetting order arrival rates (or, equivalently, lower expected arrival times for
offsetting orders). Proposition 5 investigates the effects of the offsetting order arrival rates.

Proposition 5 (Effects of offsetting order arrival rates). In the economy with costly
short-selling and marketmakers,

i) The call and put bid and ask prices are decreasing in their offsetting sell order arrival
rates λCs, λPs, while they are increasing in their offsetting buy order arrival rates λCb,
λPb, respectively.
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ii) Both the call and put bid-ask spreads are decreasing in their offsetting order arrival
rates λCs, λCb and λPs, λPb, respectively.

iii) The effects of the shorting fee and the partial lending on the call and put bid-ask spreads
are decreasing in the offsetting order arrival rates λCs, λCb, λPs, λPb.

Property (i) reveals that the call and put bid and ask prices are decreasing in their
offsetting sell order arrival rates λCs, λPs, while they are increasing in their offsetting buy
order arrival rates λCb, λPb, respectively. This is fairly intuitive since it states that option
prices are decreasing in investors’ selling activity, but are increasing in buying activity. In
our economy, this result is due to the fact that option bid and ask prices are given by
the marketmakers’ expected cost of hedging a sell and a buy order, respectively, where the
expectation is taken with respect to the uncertainty about the offsetting order arrival times
(Lemma 1). An increase in the arrival rates increases the probability of perfect hedging
via an offsetting order, which not only costs less for hedging a buy order but also yields
more proceeds from hedging a sell order as compared to the perfect hedge portfolio in the
underlying stock. For instance, a higher offsetting call sell order arrival rate λCs reduces
the call ask price CAsk

t because marketmakers are more likely to perfectly hedge the current
buy order via an offsetting sell order at a lower cost, which in turn also reduces the call bid
price CBid

t since the current value of the future call ask price is now lower in (9). Similar
arguments show that a higher offsetting put sell order arrival rate λPs reduces the put ask
PAsk
t and bid PBid

t prices, while a higher offsetting put buy order arrival rate increases them.

Property (ii) shows that both the call and put bid-ask spreads are decreasing in their
respective offsetting order arrival rates. This result is also intuitive as it simply says that
option bid-ask spreads are decreasing in liquidity (e.g., investors’ buying/selling activity).
In our economy, the maximum possible option bid-ask spreads are the no-arbitrage ranges
in Proposition 1, and arise in the special cases of infinite expected arrival times for offsetting
orders (no possibility of offsetting trades as discussed in Section 3). In contrast, the minimum
possible option bid-ask spreads are zero, and arise in the special cases of zero expected
arrival times for offsetting orders. As an offsetting order is expected to arrive immediately,
marketmakers do not need to form the hedge portfolios, and the competition among them
leads to the same ask and bid prices.

In general, the effects of short-selling costs on option prices depend on the extent of the
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investors’ buying/selling activity, and hence options liquidity. Property (iii) shows that the
extent of the effects of the shorting fee and partial lending on bid-ask spreads decrease in
the investors’ buying/selling activity. Hence, an increase in the shorting fee increases, while
an increase in the partial lending decreases the option bid-ask spreads more for relatively
illiquid options that have lower levels of offsetting order arrival rates.17 This is intuitive
as it simply says that the effects of short-selling costs are more pronounced for relatively
illiquid options with lower trading activity. In our model, this occurs because marketmakers
are more likely to hedge the relatively illiquid options via hedge portfolios, through which
short-selling costs affect option prices directly.

5 2008 Short-Selling Ban and Quantitative Analysis

In this Section, we first apply our model to the widely-studied 2008 US short-selling ban
period, during which option marketmakers were still allowed to short-sell. Consistent with
empirical evidence, we first show that both the call and put bid-ask spreads and apparent
put-call parity violations of banned stocks are higher than those of unbanned stocks. Second,
we demonstrate the asymmetric effect of the ban on the option prices of banned stocks in
that call bid prices decrease more than ask prices, and put ask prices increase more than
the bid prices. We then quantify our model and demonstrate that the effects of short-selling
costs on option prices are economically significant for expensive-to-short stocks. Finally, we
apply our model and shed light on the behavior of option prices of the Palm stock in 2000,
during which it experienced extreme short-selling and violations of the law of one price.

5.1 2008 Short-Selling Ban

In this Section, we apply our model to the September 2008 US short-selling ban period.18

During this period the option marketmakers were exempt from the ban and were allowed to
17We know that both the call and put bid-ask spreads are increasing in the shorting fee φ for typical

options (Proposition 3(ii)), and they are decreasing in the partial lending α (Proposition 4(ii)).
18See Battalio and Schultz (2011) for more details and relevant regulatory events for this period starting

from September 19, 2008 and ending on October 8, 2008 during which a short-selling ban was imposed on
nearly 800 financial stocks in the US.
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short-sell to provide the marketmaking facility. Therefore, our option prices of Proposition
2 are still valid for options on both the banned and unbanned stocks during this period. The
main difference between the banned and unbanned stocks was the fact that the ban led to
a decrease in the partial lending while leading to a simultaneous increase in the shorting fee
for the banned stocks. This is because the short-selling ban reduced the overall short-selling
activity on banned stocks since the only short-sellers on them were the marketmakers and
specialists. This meant that investors who were long in these stocks were more likely to
lend a smaller fraction of their shares. In fact, the evidence indicates that the short-selling
ban reduced (roughly halved) the short-selling activity but increased (roughly doubled) the
shorting fee of banned stocks (Boehmer, Jones, and Zhang (2013), Harris, Namvar, and
Phillips (2013), Kolasinski, Reed, and Thornock (2013)).19 In light of this evidence, we take
the shorting fee of the banned stocks, φBan, to be twice the shorting fee of the unbanned
stocks, denoted by φ as before. Moreover, we also take the partial lending for the banned
stocks, αBan to be half of the partial lending of the unbanned stock, denoted by α as before.

In sum, these simple adjustments imply that the marketmakers were effectively paying
double the rate φBan = 2φ for short-selling, but earning the same rate αBanφBan = αφ for
holding a stock share long in their hedge portfolios of options on banned stocks as compared
to options on otherwise identical unbanned stocks during the ban period, as well as to options
on them before the ban.20 Proposition 6 reports the effects of the short-selling ban on the
option prices of banned and unbanned stocks during the ban period.

Proposition 6 (Effects of short-selling ban). During the short-selling ban,

i) The call bid and ask prices of banned stocks are lower, while the put bid and ask prices
of banned stocks are higher than those of unbanned stocks.

19Boehmer, Jones, and Zhang (2013) report that during the ban period, shorting activity roughly halved
(decreased from 21.40% to 9.96% of trading volume), while Harris, Namvar, and Phillips (2013) also document
a similar magnitude for the reduction in the short interest levels of banned stocks (a decrease from roughly
7.00% to 4.00%). On the other hand, Kolasinski, Reed, and Thornock (2013) report that during the ban
period, shorting fees of banned stocks roughly doubled (increased by 113% from 0.65% to 1.38%).

20Since the short-selling ban reduced the short-selling activity but increased the shorting fee, it was
effectively a negative supply shock in the short selling and stock lending market for the banned stocks (Cohen,
Diether, and Malloy (2007)). We note that doubling the shorting fee while halving the partial lending of the
banned stocks allows us to demonstrate the effects of the ban clearly and in a simple fashion as Proposition 6
illustrates. Adjusting the shorting fee and partial lending exactly as in the evidence complicates the analysis
unnecessarily but also leads to similar results that can be shown numerically.
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ii) Both the call and put bid-ask spreads of banned stocks are higher than those of unbanned
stocks.

iii) The implied stock bid and ask prices of banned stocks are lower than those of unbanned
stocks.

iv) The call bid price decreases more than the ask price, while the put ask price increases
more than the bid price of banned stocks.

Proposition 6 first reveals that during the short-selling ban, options on banned stocks
have lower call and higher put prices as compared to those of unbanned stocks (property (i)).
Proposition 6 further reveals that options on banned stocks have higher bid-ask spreads and
lower implied stock prices than those of unbanned stocks (property (ii)–(iii)), consistent with
empirical evidence (Battalio and Schultz (2011), Grundy, Lim, and Verwijmeren (2012), Lin
and Lu (2016)). Proposition 6 also demonstrate an asymmetric effect of the short-selling
ban for options on banned stocks in that their call bid prices decrease more than their ask
prices, while their put ask prices increase more than their bid prices (property (iv)), also
consistent with empirical evidence (Battalio and Schultz (2011)). These results arise because
the short-selling ban only affects those hedge portfolios that are short in the stock, but does
not affect the ones that are long in the stock since they earn the same rate per share. This
reduces the proceeds from the hedge portfolios of marketmakers as call buyers but has no
effect on the costs of their hedge portfolios as call sellers. Since call prices are weighted
average of these costs and proceeds (Proposition 2), the short-selling ban leads to lower call
bid and ask prices, higher call bid-ask spreads, and relatively higher decreases in the call
bid prices. Conversely, the short-selling ban increases the costs of the hedge portfolios of
marketmakers as put sellers, but has no effect on the proceeds from their hedge portfolios
as put buyers. Since put prices are weighted average of these costs and proceeds, the short-
selling ban leads to higher put bid and ask prices, higher put bid-ask spreads, and relatively
higher increases in the put ask prices. A decrease in call prices along with an increase in put
prices immediately lead to lower implied stock prices (21)–(22) which then lead to higher
apparent put-call parity violations for banned stocks as compared to unbanned stocks.
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5.2 Quantitative Analysis

To quantify our model, we determine the parameter values as follows. The shorting fee and
partial lending values are based on the comprehensive data used in Drechsler and Drechsler
(2016), who sort stocks into deciles by their shorting fee and report the average shorting
fee and short interest ratios, SIR (total number of shares shorted normalized by shares
outstanding), for the sample period 2004-2013. We investigate the quantitative effects of
short-selling costs by considering options on a typical stock in the lowest shorting fee decile
(D1) and the highest shorting fee decile (D10), henceforth expensive-to-short stocks, for
which Drechsler and Drechsler report the average shorting fees to be 0.02% and 6.96%,
respectively. We next take the ratio of a stock’s short interest to long interest (the short
interest plus outstanding shares) to be an observable proxy for its partial lending parameter
α. This ratio is a plausible proxy since it gives the fraction of aggregate long position lent
to short-sellers. Normalizing by the outstanding shares gives this ratio in terms of only the
short interest ratio as SIR/(1 + SIR). Moreover, since lenders are mainly institutions in
reality (see, Reed (2013)), we further refine this measure by considering the short interest
ratios normalized by institutional ownership, denoted by SIRIO. These are readily provided
for each decile in Drechsler and Drechsler, who report the values of 4.5% and 26.5%, for the
lowest (D1) and the highest (D10) shorting fee deciles, respectively. Applying these values
to SIRIO/(1 + SIRIO), we obtain the partial lending parameter values for these deciles as
4.31% and 20.95%, respectively.21

For the securities market parameter values, we take the interest rate to be the average
3-month T-bill rate for the sample period of Drechsler and Drechsler (2016) which is 1.80%.
We set the stock price as the reported average stock price of 32.20 in Ofek, Richardson,
and Whitelaw (2004).22 The return volatility of the stock is set to 40% as in Jensen and
Pedersen (2016). For option specific parameter values, we consider varying moneyness (e.g.,

21We note that in Drechsler and Drechsler (2016), the sample average of the short interest ratio is 9.02%,
which would imply an average partial lending value of 8.27% for a typical stock according to our formula
above. This value is comparable to the average fraction of outstanding shares actually lent out in the US,
8.91%, in the sample of Saffi and Sigurdsson (2010) (discussed in Section 2).

22Other empirical works studying the effects of short-selling costs on options also document similar values
for the average stock price in their samples (e.g. it is 30.76 in Battalio and Schultz (2011)). Importantly,
our main results do not vary much with any particular value of the stock price as we use the same value for
the typical stock in D1 and D10.
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Name Symbol Value
Shorting fee φ {0.02%, 6.96%} varying
Partial lending α {4.31%, 20.95%} varying
Offsetting order arrival rates λCs,λCb,λCb,λPb 2.77
Stock price St 32.20
Stock return volatility σ 40.00%
Riskless interest rate r 1.80%
Option moneyness K/St {0.90, 1.00, 1.10} varying
Option time to maturity T − t 0.25

Table 1: Parameter values. This table reports the parameter values used in our quantitative
analysis. The determination of these values is presented in the text.

the ratio of option strike to stock price, K/St) levels of 0.90, 1.00, 1.10 to demonstrate the
varying effects of short-selling costs across option moneyness. Option time-to-maturity is
taken to be 0.25 (3 months) which is well within the reported average option maturities in
the samples of empirical works that we compare our results to.23 Finally, we determine the
offsetting call sell order arrival rates by giving equal weights to both ways of hedging in
our model, hedging via an offsetting order and via a hedge portfolio. For instance, giving
a probability of 0.5 to there being no arrival of an offsetting call sell order by the maturity
date, 1−

´ T
t
dFCs (u) = e−λCs(T−t) yields the value for the offsetting call sell order arrival rate

as 2.77, which is also the value of all the other arrival rates.24 This procedure leads to the
parameter values in Table 1.

Table 2 reports the quantitative effects of short-selling costs on our option prices of
Proposition 2. We consider a call option (Panel (a)) and a put option (Panel (b)) of a
typical stock in the lowest (D1) and the highest (D10) shorting fee deciles for three different

23For instance, the median option maturity in the full sample of Ofek, Richardson, and Whitelaw (2004)
is 115 days. We also provide Tables 5–6 in Appendix B for the effects of short-selling costs on options with
a shorter maturity of 1.5 months and a longer maturity of 4.5 months, respectively.

24We recognize that the arrival rates for call and put buy and sell orders may be different since they are
inherently linked to option buying/selling activity, which may differ across options as shown by Lakonishok,
Lee, Pearson, and Poteshman (2007). However, keeping the same value for all arrival rates allows us to more
clearly compare the quantitative effects of short-selling costs.
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option moneyness levels. We also report the percentage differences of mid-points of bid
and ask prices (denoted by CMid

t and PMid
t for call and put options, respectively) from the

standard Black-Scholes in the relative change column.

Table 2 reveals that our model implies a significantly lower call and a higher put bid and
ask prices for the typical stock in D10, as compared to those for the typical stock in D1. In
particular, for the typical stock in D10, its at-the-money (ATM) call mid-point price is 6.80%
lower (-6.82% vs -0.02%), while that of the put is 6.28% higher (6.30% vs 0.02%) than the
corresponding ones in D1. We see that these effects are stronger for out-of-the-money call
and put options, being 8.17% lower and 8.15% higher for option moneyness of 1.10 and 0.90,
respectively. Table 2 also quantifies the relative bid-ask spread by reporting the ratio of the
bid-ask spread to the mid-point prices. We see that the typical stock in D10, has a 2.35%
higher ATM call bid-ask spread as compared to the spread of the typical stock in D1. For
the ATM put this difference is 1.95%. Again, these effects are stronger for out-of-the-money
options. We also see that the typical stock in D10 has a 2.81% lower (37.18% vs 39.99)
ATM call implied volatility as compared to the implied volatility of the typical stock in D1.
However, for the ATM put, the typical stock in D10 has a 2.45% higher (42.46 vs 40.01%)
implied volatility compared to the implied volatility of the typical stock in D1.

Finally, substituting the at-the-money option prices in Table 2 into (21)–(22) yields the
implied stock bid and ask prices for the typical stock in D1 to be the same as the underlying
stock price. However, this procedure yields the implied stock bid and ask prices to be 31.81
and 31.92, respectively, for the typical stock in D10. In terms of percentage deviation these
values imply a 1.04% lower implied stock mid-price from the underlying stock price. This
magnitude is within the documented range in Evans, Geczy, Musto, and Reed (2007) who
report an average deviation of 0.36% and the 90th percentile deviation of 1.40% in their
sample.25

We now apply our model to the option prices of the Palm stock during its IPO in March,
2000. This event was notable since it was a prime example of apparent violations of the law

25Similarly, Ofek, Richardson, and Whitelaw (2004) find that a one standard deviation (2.77%) increase in
the shorting fee leads to a 0.67% lower implied stock price as compared to the underlying stock price in their
sample. For this magnitude of an increase in the shorting fee, our model implies a comparable 0.60% lower
implied stock price after also adjusting for their sample average maturity. We note that the implied stock
prices are stable and do not vary much in option moneyness, and therefore it is sufficient to only consider
the at-the-money option prices to derive the implied stock prices as we do here.
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Panel (a): Call option
Shorting Option BS Bid Ask Relative Bid-Ask Relative Implied
fee decile moneyness price price price change spread spread volatility

K

St
CBS
t CBid

t CAsk
t

CMid
t −CBS

t

CBS
t

CAsk
t −CBid

t
CAsk

t −CBid
t

CMid
t

σ̃t,CMid

D1 1.10 1.43 1.43 1.43 -0.02% 0.00 0.01% 39.99%
D10 1.43 1.29 1.33 -8.19% 0.04 2.86% 38.05%
D1 1.00 2.63 2.63 2.63 -0.02% 0.00 0.01% 39.99%
D10 2.63 2.42 2.48 -6.82% 0.06 2.36% 37.18%
D1 0.90 4.46 4.46 4.46 -0.01% 0.00 0.01% 39.99%
D10 4.46 4.18 4.26 -5.50% 0.08 1.88% 35.19%

Panel (b): Put option
K

St
PBS
t PBid

t PAsk
t

PMid
t −PBS

t

PBS
t

PAsk
t −PBid

t
PAsk

t −PBid
t

PMid
t

σ̃t,PMid

D1 1.10 4.49 4.49 4.49 0.01% 0.00 0.01% 40.01%
D10 4.49 4.67 4.74 4.89% 0.07 1.53% 43.61%
D1 1.00 2.49 2.49 2.49 0.02% 0.00 0.01% 40.01%
D10 2.49 2.62 2.67 6.30% 0.05 1.96% 42.46%
D1 0.90 1.11 1.11 1.11 0.02% 0.00 0.01% 40.00%
D10 1.11 1.19 1.22 8.17% 0.03 2.51% 41.74%

Table 2: Quantitative effects of costly short-selling on option prices. This table reports
the effects of costly short-selling for a call option (Panel (a)) and a put option (Panel (b)) on a
typical stock in the lowest (D1) and the highest (D10) shorting fee decile in Drechsler and Drechsler
(2016) for three different option moneyness levels. CMid

t and PMid
t denote the mid-point prices of

the call and put, e.g., CMid
t = 0.5(CAsk

t +CBid
t ) and PMid

t = 0.5(PAsk
t +PBid

t ). Implied volatilities
in the last columns are obtained by employing the standard approach of inverting the Black-Scholes
formula using the mid-point option prices as inputs. All parameter values are as in Table 1.

of one price (Lamont and Thaler (2003)). In particular, there was a long-lasting mispricing of
Palm relative to its parent company 3Com in the sense that the subsidiary Palm was worth
more than its parent company 3Com. This long-lasting mispricing of 3Com/Palm was often
attributed to the extreme short-selling costs of Palm. In particular, its shorting fee was
reported to be around 35% during this period (D’Avolio (2002)), and its short interest after
the IPO in March was 19.4%, then increased to 44.9% in April, and to 70% in May, and
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peaked at 147.6% in July (Lamont and Thaler (2003)).26

We demonstrate the effects of short-selling costs on Palm option prices by compar-
ing our prices to those in Lamont and Thaler (2003), who provide prices of at-the-money
Palm options on March 17, 2000 for three different maturities, May (T − t = 0.17), August
(T − t = 0.42) and November (T − t = 0.67). We take the shorting fee to be its reported
value of 35%. Then we use the (approximate) average short interest ratio for the August
maturity option, 70% to back out our partial lending parameter value as before and obtain
0.70/1.70 = 41.18%. For the securities market parameter values, we follow Lamont and
Thaler (2003) and set the interest rate as the 3-month LIBOR rate of 6.21% to price May
options, and the 6-month LIBOR rate of 6.41% to price August and November options. We
set the stock price as the reported Palm stock price on March 17, 2000 of 55.25, which is also
the strike price for the at-the-money options considered. The return volatility of the Palm
stock is set to its average realized volatility during the life of the mid-maturity option expired
in August, 104.6%.27 Finally, we again give equal weights to both ways of hedging for August
maturity option, hedging via an offsetting order and via a hedge portfolio. This yields the
value for all the offsetting order arrival rates as 1.66, which is also kept the same for the May
and November maturity options. Using these parameter values, we now quantify the effects
of costly short-selling on Palm options and present our results in Table 3 for at-the-money
call and put options, as well as for the implied stock prices and their percentage deviations
from the underlying stock price for three different option maturity dates.

Table 3 reveals that Palm option prices displayed significant apparent put-call parity
violations, in the sense that put prices were higher than call prices (which should not happen
for at-the-money options), and the implied stock prices were significantly lower than the
underlying stock price. In particular, the evidence indicates that for the mid-maturity options
expiring in August, call bid and ask prices of 9.25 and 10.75 were significantly less than the
put bid and ask prices of 17.25 and 19.25, respectively. Our model also generates this feature
by yielding lower call bid and ask prices of 11.54 and 12.18 than put bid and ask prices of

26Since both the short-selling activity and the shorting fee increased, there was effectively a positive
demand shock in the short selling and stock lending market of the Palm stock as described in (Cohen,
Diether, and Malloy (2007)).

27We estimated the return volatility of Palm in a standard way using the standard CRSP data. Considering
the shorter maturity May or longer maturity November also give similar very high volatility values.
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Palm Options on March 17, 2000
Option Call Put Implied stock
maturity Bid Ask Bid Ask Bid Ask
T − t CBid

t CAsk
t PBid

t PAsk
t S̃Bidt S̃Askt

Evidence
May

5.75 7.25 10.63 12.63 47.55 -13.93% 51.05 -7.60%
Our Model 8.02 8.60 9.73 10.20 52.51 -4.96% 53.56 -3.06%
Black-Scholes 9.60 9.60 9.01 9.01 55.25 0.00% 55.25 0.00%
Evidence

Aug
9.25 10.75 17.25 19.25 43.57 -21.14% 47.07 -14.81%

Our Model 11.54 12.18 15.54 15.98 49.36 -10.66% 50.43 -8.72%
Black-Scholes 15.15 15.15 13.70 13.70 55.25 0.00% 55.25 0.00%
Evidence

Nov
10.00 11.50 21.63 23.63 39.12 -29.19% 42.62 -22.86%

Our Model 13.52 13.95 19.56 19.84 46.62 -15.62% 47.32 -14.35%
Black-Scholes 19.06 19.06 16.75 16.75 55.25 0.00% 55.25 0.00%

Table 3: Quantitative effects of costly short-selling on Palm options. This table reports the
effects of extreme short-selling on the Palm options and implied stock prices on March 17, 2000 for
three different option maturity dates, May 20, August 19 and November 18, 2000. The values in the
Evidence rows are from Lamont and Thaler (2003) (Table 6, p. 256). The parameter values used in
our model and the Black-Scholes model are as discussed in text: φ = 35%, α = 41.18%, r = 6.21%
(May), r = 6.41% (Aug, Nov), St = K = 55.25, σ = 104.6%, and λCs = λCb = λCb = λP b = 1.66.

15.54 and 15.98, a feature not possible in the standard Black-Scholes model. In terms of the
deviation from the underlying stock price, we see that the implied stock bid price was 21.14%
and ask price 14.81% lower than the underlying stock price. The option prices implied by
our model are able to generate roughly half of this deviation as they imply 10.66% (bid)
and 8.72% (ask) lower prices. As Lamont and Thaler (2003) also highlight, high levels of
short-selling costs were only part of the story as there were several other extreme risks and
costs for short-sellers of the Palm stock during that time (e.g., search costs, uncertainties
about collateral levels, shorting fee and early recall of the shares by lenders). Nevertheless,
our model demonstrates that, for mid and long maturity options, roughly half of the price
deviations could be due to the costly short-selling implying that the combined effects of all
the other risks, costs and considerations could amount to the remaining half.
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6 Conclusion

In this paper, we have provided an analysis of option prices in the presence of costly short-
selling by adopting the classic Black-Scholes framework. We have shown that standard no-
arbitrage restrictions alone cannot determine option prices but only lead to lower and upper
bounds for them with costly short-selling. With option marketmakers present, we then
obtained unique option bid and ask prices in closed-form, representing the marketmakers’
expected cost of hedging and preserving the well-known properties of the Black-Scholes
prices.

Consistently with empirical evidence, we have shown that bid-ask spreads of typical
options and apparent put-call parity violations are increasing in the shorting fee. We have
also found that option bid-ask spreads are decreasing in the partial lending, and the effects of
costly short-selling are more pronounced for relatively illiquid options. Moreover, by applying
our model to the recent 2008 short-selling ban period, we have demonstrated the asymmetric
effect of the ban on the prices of options on banned stocks, whose bid-ask spreads and
apparent put-call parity violations are higher than those for unbanned stocks, consistently
with empirical evidence. Finally, our quantitative analysis has demonstrated that the effects
of costly short-selling on option prices are economically significant for expensive-to-short
stocks.

As we highlighted in Remarks 1–2, so as to not unnecessarily confound or complicate
our analysis, we did not consider time-variation in short-selling costs and other potential
features of option marketmaking. We leave these considerations and other relevant issues
for future research.
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Appendix A: Proofs

Proof of Proposition 1. To determine the option prices that admit no-arbitrage we first
find the cost of the perfect hedge portfolio, the self-financing portfolio in the underlying
stock and riskless bond that perfectly hedges (offsets) the option seller and buyer’s payoff at
its maturity. We then use standard arguments to determine the range of option prices that
admit no-arbitrage. For a given option payoff, we denote its time-t hedge portfolio cost by
Vt, the number of units in the riskless bond by βt, and the number of shares in the underlying
stock by θt.

We first consider the call option seller’s payoff −max {ST −K, 0}. The portfolio that
perfectly hedges this payoff at its maturity must have VT = max {ST −K, 0}. To determine
the hedge portfolio cost Vt for all t < T , we conjecture that the hedge portfolio is always
long in the underlying stock, θt > 0 for all t ≤ T . In this case, the fraction α of the long
position is lent to short-sellers. We decompose the cost of the hedge portfolio as

Vt = βtBt + θtSt = βtBt + (1− α) θtSt + αθtSt, (A.1)

where the last term αθtSt is the total amount lent to short sellers, which in addition to the
stock capital gains also earns the shorting fee φ. Hence, the dynamics of the self-financing
hedge portfolio is given by

dVt = βtdBt + (1− α) θtdSt + αθt (dSt + φStdt)

= rVtdt+ (µ− r + αφ) θtStdt+ σθtStdωt, (A.2)

where the second equality follows by substituting the bond and stock dynamics (1)–(2) and
βtBt from (A.1), and rearranging. We observe that (A.2) is the dynamics of the self-financing
hedge portfolio in the Black-Scholes economy where the underlying stock pays a continuous
dividend at a constant rate αφ. Since VT = max {ST −K, 0}, standard valuation arguments
(e.g., McDonald (2006)) yield the cost of the hedge portfolio to be Vt = CBS

t (αφ) , where
CBS
t (q) denotes the standard Black-Scholes call price adjusted for the constant dividend

yield q and is given by (5). Lastly, we confirm our conjecture that the hedge portfolio is
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always long in the underlying stock by showing

θt = ∂

∂St
CBS
t (αφ) = e−αφ(T−t)Φ (d1 (αφ)) > 0, (A.3)

where Φ (.) is the standard normal cumulative distribution function and d1 (q) is as in (7).

We next consider the call option buyer’s payoff max {ST −K, 0}. The portfolio that
perfectly hedges this payoff at its maturity must have VT = −max {ST −K, 0}. To determine
the hedge portfolio cost Vt for all t < T , we conjecture that the hedge portfolio is always
short in the underlying stock, θt < 0 for all t ≤ T . In this case, the cost of the hedge portfolio
is

Vt = βtBt + θtSt +Mt, (A.4)

where the last termMt denotes the total amount collateralized, and hence cannot be invested
in other securities, and is given by Mt = −θtSt > 0. For the short-seller this account earns
the rebate rate r− φ, implying its dynamics as dMt = (r − φ)Mtdt. Hence, the dynamics of
the hedge portfolio cost is given by

dVt = βtdBt + θtdSt + dMt

= rVtdt+ (µ− r + φ) θtStdt+ σθtStdωt, (A.5)

where the second equality follows by substituting the bond and stock dynamics (1)–(2) and
βtBt from (A.4), and rearranging. This is the dynamics of the self-financing hedge portfolio
in the Black-Scholes economy where the underlying stock pays a continuous dividend at a
constant rate φ. Since VT = −max {ST −K, 0}, standard valuation arguments yield the
cost of the hedge portfolio to be Vt = −CBS

t (φ) , where a negative cost means proceeds, a
positive amount CBS

t (φ) that investors receive. Lastly, we confirm our conjecture that the
hedge portfolio is always short in the underlying stock by showing

θt = ∂

∂St

(
−CBS

t (φ)
)

= −e−φ(T−t)Φ (d1 (φ)) < 0. (A.6)

Having determined the cost of the hedge portfolio for the call option buyer and seller, we
now show that a call option price, Ct, admits no-arbitrage if and only if the double inequality
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(3) in Proposition 1 is satisfied. To see this, suppose by contradiction that the call option
were trading at a price CBS

t (αφ) < Ct. Then selling the call option at the price Ct and
forming the hedge portfolio at the cost CBS

t (αφ) would lead to a zero payoff at the option
maturity date. However, this strategy has a positive initial profit Ct − CBS

t (αφ), hence
this option price admits arbitrage. Now, suppose by contradiction that the call option were
trading at a price Ct < CBS

t (φ). Then buying the call option at the price Ct and forming
the hedge portfolio by receiving CBS

t (φ) would lead to a zero payoff at the option maturity
date. However, this strategy has a positive initial profit CBS

t (φ)−Ct, hence this option price
also admits arbitrage. On the other hand, if the call price satisfies the double inequality (3),
then it admits no-arbitrage because selling or buying the option and perfectly hedging it at
its maturity can at most lead to a zero initial profit.

We now consider the put option seller’s payoff −max {K − ST , 0}. The portfolio that
perfectly hedges this payoff at its maturity must have VT = max {K − ST , 0}. To determine
the hedge portfolio cost we conjecture that the hedge portfolio is always short in the under-
lying stock. Following the same steps as in the call option buyer’s payoff above leads to the
dynamics (A.5), hence standard valuation arguments yield the cost of the hedge portfolio to
be Vt = PBS

t (φ) , where PBS
t (q) denotes the standard Black-Scholes put price adjusted for

the constant dividend yield q and is given by (6). Lastly, we confirm our conjecture that the
hedge portfolio is always short in the underlying stock by showing

θt = ∂

∂St
PBS
t (φ) = −e−φ(T−t)Φ (−d1 (φ)) < 0. (A.7)

We next consider the put option buyer’s payoff max {K − ST , 0}. The portfolio that
perfectly hedges this payoff at its maturity must have VT = −max {K − ST , 0}. To determine
the hedge portfolio cost we conjecture that the hedge portfolio is always long in the underlying
stock. Following the same steps as in the call option seller’s payoff above leads to the
dynamics (A.2), hence standard valuation arguments yield the cost of the hedge portfolio
to be Vt = −PBS

t (αφ), where again a negative cost means proceeds. Lastly, we confirm our
conjecture that the hedge portfolio is always long in the underlying stock by showing

θt = ∂

∂St

(
−PBS

t (αφ)
)

= e−αφ(T−t)Φ (−d1 (αφ)) > 0. (A.8)
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Going through the same steps as in the call option case shows that a put option price,
Pt, admits no-arbitrage if and only if the double inequality (4) in Proposition 1 is satisfied.

The unique no-arbitrage call and put prices in the special case of full lending (8) follow
immediately by substituting α = 1 into the inequalities (3)–(4).

Property (i) that the call price upper bound is decreasing in both the shorting fee and
partial lending, while its lower bound is decreasing in the shorting fee but not dependent
on the partial lending follows from the partial derivative of the standard Black-Scholes call
price with respect to the dividend yield (e.g., McDonald (2006))

∂

∂q
CBS
t (q) = − (T − t)Ste−q(T−t)Φ (d1 (q)) < 0, (A.9)

which implies

∂

∂φ
CBS
t (φ) < 0, ∂

∂φ
CBS
t (αφ) < 0,

∂

∂α
CBS
t (φ) = 0, ∂

∂α
CBS
t (αφ) < 0. (A.10)

Property (ii) that the put price upper bound is increasing in the shorting fee but is not
dependent on the partial lending, while its lower bound is increasing in both the shorting
fee and partial lending follows from the partial derivative of the standard Black-Scholes put
price with respect to the dividend yield (e.g., McDonald (2006))

∂

∂q
PBS
t (q) = (T − t)Ste−q(T−t)Φ (−d1 (q)) > 0, (A.11)

which implies

∂

∂φ
PBS
t (φ) > 0, ∂

∂φ
PBS
t (αφ) > 0,

∂

∂α
PBS
t (φ) = 0, ∂

∂α
PBS
t (αφ) > 0. (A.12)

Property (iii) that the call prices are lower, while the put prices are higher than the corre-
sponding prices in the Black-Scholes is immediate from properties (i)–(ii) since the Black-
Scholes prices are obtained when these bounds are evaluated at φ = 0.
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Proof of Lemma 1. We first derive the expected cost of hedging representations for the
call bid and ask prices in detail, and then for the put prices relying on similar arguments.
At time t, the call bid price is set by the competitive marketmakers such that buying a
call option at the bid price CBid

t and forming the hedge portfolio and receiving the proceeds
CBS
t (φ) (Proposition 1) yields zero expected profit. The difference CBS

t (φ)−CBid
t is invested

in the riskless bond earning the interest rate r. If there is no offsetting call buy order by the
maturity date T , the marketmaker’s profit from this trade at maturity becomes the amount
[CBS

t (φ)− CBid
t ] er(T−t), which has a current value, ΠT,CBid , of

ΠT,CBid ≡ CBS
t (φ)− CBid

t . (A.13)

If an offsetting call buy order arrives at a subsequent time u < T , the marketmaker sells a
call option at an ask price CAsk

u , and liquidates the hedge portfolio at a value of −CBS
u (φ).

This leads to the marketmaker’s profit from this trade at time u as

[
CBS
t (φ)− CBid

t

]
er(u−t) +

[
CAsk
u − CBS

u (φ)
]
,

which has a current value, Πu,CBid , of

Πu,CBid ≡
[
CBS
t (φ)− CBid

t

]
+ Vt

[
CAsk
u − CBS

u (φ)
]
, (A.14)

where Vt [CAsk
u − CBS

u (φ)] is the current value of the time-u random payoff CAsk
u − CBS

u (φ)
which is yet to be determined. Therefore, the marketmaker’s expected profit from buying a
call option, ΠCBid , becomes

ΠCBid ≡
ˆ T

t

Πu,CBiddFCb (u) + ΠT,CBid

(
1−
ˆ T

t

dFCb (u)
)
, (A.15)

where FCb is the distribution function of the offsetting call buy order arrival time. Substi-
tuting (A.13)–(A.14) into (A.15) and rearranging yields the expected profit

ΠCBid =
[
CBS
t (φ)− CBid

t

]
+
ˆ T

t

Vt
[
CAsk
u − CBS

u (φ)
]
dFCb (u) . (A.16)
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By equating the expected profit (A.16) to zero we back out the call bid price as

CBid
t = CBS

t (φ) +
ˆ T

t

Vt
[
CAsk
u − CBS

u (φ)
]
dFCb (u) .

Adding and subtracting
´ T
t
CBS
t (φ) dFCb (u) to the right hand side gives the expected cost

representation for the call bid price in (9).

Similarly, at time t, the call ask price is set by the competitive marketmakers such
that selling a call option at the ask price CAsk

t and forming the hedge portfolio at a cost
CBS
t (αφ) (Proposition 1) yields zero expected profit. The difference CAsk

t − CBS
t (αφ) is

again invested in the riskless bond. If there is no offsetting call sell order by the option
maturity date T , the marketmaker’s profit from this trade at maturity becomes the amount
[CAsk

t − CBS
t (αφ)] er(T−t), which has a current value, ΠT,CAsk , of

ΠT,CAsk ≡ CAsk
t − CBS

t (αφ) . (A.17)

If an offsetting call sell order arrives at a subsequent time u < T , the marketmaker buys a
call option at a bid price CBid

u , and liquidates the hedge portfolio at a value of CBS
u (αφ).

This leads to the marketmaker’s profit from this trade at time u as

[
CAsk
t − CBS

t (αφ)
]
er(u−t) + CBS

u (αφ)− CBid
u ,

which has a current value, Πu,CAsk , of

Πu,CAsk ≡
[
CAsk
t − CBS

t (αφ)
]

+ Vt
[
CBS
u (αφ)− CBid

u

]
, (A.18)

where Vt [CBS
u (αφ)− CBid

u ] is the current value of the time-u random payoff CBS
u (αφ)−CBid

u

which is yet to be determined. Therefore, the marketmaker’s expected profit from selling of
a call option, ΠCAsk , becomes

ΠCAsk ≡
ˆ T

t

Πu,CAskdFCs (u) + ΠT,CAsk

(
1−
ˆ T

t

dFCs (u)
)
, (A.19)

where FCs is the distribution function of the offsetting call sell order arrival time. Substituting
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(A.17)–(A.18) into (A.19) and rearranging yields the expected profit

ΠCAsk =
[
CAsk
t − CBS

t (αφ)
]

+
ˆ T

t

Vt
[
CBS
u (αφ)− CBid

u

]
dFCs (u) . (A.20)

By equating the expected profit (A.20) to zero we back out the call ask price as

CAsk
t = CBS

t (αφ)−
ˆ T

t

Vt
[
CBS
u (αφ)− CBid

u

]
dFCs (u) .

Adding and subtracting
´ T
t
CBS
t (αφ) dFCs (u) to the right hand side of the above equation

gives the expected cost representation for the call ask price in (10).

For the expected cost of hedging representations for the put prices, going through the
same steps as in the call option case yields the put bid and ask prices as

PBid
t = PBS

t (αφ) +
ˆ T

t

Vt
[
PAsk
u − PBS

u (αφ)
]
dFPb (u) ,

PAsk
t = PBS

t (φ)−
ˆ T

t

Vt
[
PBS
u (φ)− PBid

u

]
dFPs (u) ,

and adding and subtracting
´ T
t
PBS
t (αφ) dFPb (u) and

´ T
t
PBS
t (φ) dFPs (u), respectively, to

the right hand sides of the above equations give the expected cost representations for the
put bid and ask prices in (11)–(12).

Proof of Proposition 2. To determine the call bid and ask prices, we first conjecture
the functional forms for them. Then, using these functional forms we determine the current
values of random payoffs in the expected cost of hedging representations for the prices in
Lemma 1. Finally, by solving the resulting system of equations, we obtain the option prices
in closed-form and verify our conjectured functional forms.

We conjecture that the call bid and ask prices take the forms

CBid
t = (1− wt,CBid)CBS

t (αφ) + wt,CBidCBS
t (φ) , (A.21)

CAsk
t = wt,CAskCBS

t (αφ) + (1− wt,CAsk)CBS
t (φ) , (A.22)

for all t ≤ T and the deterministic weight processes wt,CBid , wt,CAsk to be identified later.
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Given our conjecture, the time-u random payoff of the call bid price (9) becomes

CAsk
u − CBS

u (φ) = wu,CAskCBS
u (αφ) + wu,CAsk

(
−CBS

u (φ)
)
. (A.23)

The current value of this random payoff is given by the amount required at time-t to form a
self-financing portfolio in the underlying stock and riskless bond to obtain this payoff at time
u ≥ t. For this, we consider two positions, where one is long and the other is short in the
underlying stock for all u ≥ t. The first position consists of wu,CAsk units in the call option
seller’s hedge portfolio that is long in the stock (A.3) where wu,CAsk is a positive constant.
This position has a value of wu,CAskCBS

u (αφ) at time-u with its current value given by

Vt
[
wu,CAskCBS

u (αφ)
]

= wu,CAskCBS
t (αφ) , (A.24)

since this is the amount required at time-t for a self-financing portfolio to obtain the payoff
wu,CAskCBS

u (αφ) at time u. Similarly, the second position consists of wu,CAsk units in the call
option buyer’s hedge portfolio that is short in the stock (A.6). This position has a value of
wu,CAsk (−CBS

u (φ)) at time-u with its current value given by

Vt
[
wu,CAsk

(
−CBS

u (φ)
)]

= wu,CAsk

(
−CBS

t (φ)
)
. (A.25)

Summing (A.24) and (A.25) gives the current value of the random payoff (A.23) as

Vt
[
CAsk
u − CBS

u (φ)
]

= wu,CAskCBS
t (αφ) + wu,CAsk

(
−CBS

t (φ)
)
.

Substituting this into the call bid price representation (9) and rearranging gives

CBid
t =

[ˆ T

t

wu,CAskdFCb (u)
]
CBS
t (αφ) +

[
1−
ˆ T

t

wu,CAskdFCb (u)
]
CBS
t (φ) . (A.26)

Similarly, given our conjecture, the time-u random payoff of the call ask price (10) be-
comes

CBS
u (αφ)− CBid

u = wu,CBidCBS
u (αφ) + wu,CBid

(
−CBS

u (φ)
)
. (A.27)

To determine the current value of this random payoff, we again consider two positions, where
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one is long and the other is short in the underlying stock for all u ≥ t. The first position
consists of wu,CBid units in the call option seller’s hedge portfolio that is long in the stock.
This position has a value of wu,CBidCBS

u (αφ) at time-u with its current value given by

Vt
[
wu,CBidCBS

u (αφ)
]

= wu,CBidCBS
t (αφ) . (A.28)

The second position consists of wu,CBid units in the call option buyer’s hedge portfolio that is
short in the stock. This position has a value of wu,CBid (−CBS

u (φ)) at time-u with its current
value given by

Vt
[
wu,CBid

(
−CBS

u (φ)
)]

= wu,CBid

(
−CBS

t (φ)
)
. (A.29)

Summing (A.28) and (A.29) gives the current value of the random payoff (A.27) as

Vt
[
CBS
u (αφ)− CBid

u

]
= wu,CBidCBS

t (αφ) + wu,CBid

(
−CBS

t (φ)
)
.

Substituting this into the call ask price representation (10) and rearranging gives

CAsk
t =

[
1−
ˆ T

t

wu,CBiddFCs (u)
]
CBS
t (αφ) +

[ˆ T

t

wu,CBiddFCs (u)
]
CBS
t (φ) . (A.30)

We next match our conjectured forms (A.21)–(A.22) with the derived expressions in
(A.26) and (A.30) and obtain the system for call weights as

wt,CBid = 1−
ˆ T

t

wu,CAskdFCb (u) = 1−
ˆ T

t

wu,CAskλCbe
−λCb(u−t)du, (A.31)

wt,CAsk = 1−
ˆ T

t

wu,CBiddFCs (u) = 1−
ˆ T

t

wu,CBidλCse
−λCs(u−t)du. (A.32)

It is straightforward to check that the weights (17)–(18) in Proposition 2 solve the above sys-
tem by substituting them into (A.31)–(A.32) and integrating simple exponential functions.28

The deterministic nature of the derived weights verify that the call bid and ask prices indeed
are as in (13)–(14) with the weights (17)–(18).

28Alternatively, these weights (17)–(18) can also be derived directly by differentiating the system (A.31)–
(A.32) using the Leibniz integral rule, and solving the resulting system of two linear first-order differential
equations simultaneously.
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For the put bid and ask prices, we conjecture the forms

PBid
t = (1− wt,PBid)PBS

t (φ) + wt,PBidPBS
t (αφ) , (A.33)

PAsk
t = wt,PAskPBS

t (φ) + (1− wt,PAsk)PBS
t (αφ) , (A.34)

for all t ≤ T and the deterministic weight processes wt,PBid , wt,PAsk . Going through the same
steps as in the call option case yields the derived put bid and ask prices as

PBid
t =

[ˆ T

t

wu,PAskdFPb (u)
]
PBS
t (φ) +

[
1−
ˆ T

t

wu,PAskdFPb (u)
]
PBS
t (αφ) , (A.35)

PAsk
t =

[
1−
ˆ T

t

wu,PBiddFPs (u)
]
PBS
t (φ) +

[ˆ T

t

wu,PBiddFPs (u)
]
PBS
t (αφ) . (A.36)

Matching the conjectured forms (A.33)–(A.34) with the derived expressions (A.35)–(A.36),
we obtain the system for put weights as

wt,PBid = 1−
ˆ T

t

wu,PAskdFPb (u) = 1−
ˆ T

t

wu,PAskλPbe
−λP b(u−t)du,

wt,PAsk = 1−
ˆ T

t

wu,PBiddFPs (u) = 1−
ˆ T

t

wu,PBidλPse
−λP s(u−t)du.

Again, it is straightforward to check that the deterministic weights (19)–(20) in Proposition
2 solve the above system, verifying our conjecture.

Proof of Proposition 3. Property (i) that the call bid and ask prices are decreasing, while
the put bid and ask prices are increasing in the shorting fee follows from the fact that these
prices are weighted-averages of the no-arbitrage price bounds, which are both decreasing
(call) and increasing (put) in the shorting fee (Proposition 1 properties (i)–(ii)), along with
the fact that their weights do not depend on the shorting fee.

To prove property (ii) that both the call and put bid-ask spreads are increasing in the
shorting fee for the given condition, we first obtain the bid-ask spread using (13)–(16) as

CAsk
t − CBid

t = (wt,CAsk + wt,CBid − 1)
[
CBS
t (αφ)− CBS

t (φ)
]
, (A.37)

PAsk
t − PBid

t = (wt,PAsk + wt,PBid − 1)
[
PBS
t (φ)− PBS

t (αφ)
]
. (A.38)
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Since the weights do not depend on the shorting fee φ, the bid-ask spreads are increasing in
the shorting fee if and only if

∂

∂φ
CBS
t (αφ) >

∂

∂φ
CBS
t (φ) , (A.39)

∂

∂φ
PBS
t (φ) >

∂

∂φ
PBS
t (αφ) .

By using the partial derivative of the standard Black-Scholes call and put prices (A.9) and
(A.11), we obtain these conditions as

αe−αφ(T−t)Φ (d1 (αφ)) < e−φ(T−t)Φ (d1 (φ)) ,

αe−αφ(T−t)Φ (−d1 (αφ)) < e−φ(T−t)Φ (−d1 (φ)) .

After rearranging the first condition gives the condition in property (ii) which is also a
sufficient condition for the put since

Φ (d1 (φ))
Φ (d1 (αφ)) <

Φ (−d1 (φ))
Φ (−d1 (αφ)) .

Property (iii) that the implied stock bid and ask prices are decreasing in the shorting
fee follows immediately from differentiating their definitions (21)–(22) and employing the
results in property (i) that the call bid and ask prices are decreasing, put bid and ask prices
are increasing in the shorting fee, yielding

∂

∂φ
S̃Bidt = ∂

∂φ
CBid
t − ∂

∂φ
PAsk
t < 0,

∂

∂φ
S̃Askt = ∂

∂φ
CAsk
t − ∂

∂φ
PBid
t < 0.

Proof of Proposition 4. Property (i) that the call bid and ask prices are decreasing,
while the put bid and ask prices are increasing in the partial lending follows from the fact
that these prices are weighted-averages of the no-arbitrage price bounds which are either
decreasing or do not depend on (call), and increasing or do not depend on (put) the partial
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lending (Proposition 1 properties (i)–(ii)), along with the fact that their weights do not
depend on the partial lending.

Property (ii) that both the call and put bid-ask spreads are decreasing in the partial
lending follows immediately from differentiating the call and put bid-ask spreads (A.37)–
(A.38) with respect to the partial lending α. Since the weights do not depend on the partial
lending, the bid-ask spreads are decreasing in the partial lending if and only if

∂

∂α
CBS
t (αφ) <

∂

∂α
CBS
t (φ) ,

∂

∂α
PBS
t (φ) <

∂

∂α
PBS
t (αφ) ,

which always hold as (A.10) and (A.12) illustrate.

Proof of Proposition 5. To determine the effects of the offsetting order arrival rates
on option prices, we first derive their effects on the weights (17)–(20). The effects of the
offsetting call sell and buy order arrival rates on the call weights are given by

∂

∂λCs
wt,CBid = λCb

(λCs + λCb)2

(
1− [1 + (λCs + λCb) (T − t)] e−(λCs+λCb)(T−t)

)
> 0, (A.40)

∂

∂λCs
wt,CAsk = − λCb

(λCs + λCb)2

(
1− e−(λCs+λCb)(T−t)

)
− λCs (T − t)

λCs + λCb
e−(λCs+λCb)(T−t) < 0, (A.41)

∂

∂λCb
wt,CBid = − λCs

(λCs + λCb)2

(
1− e−(λCs+λCb)(T−t)

)
− λCb (T − t)

λCs + λCb
e−(λCs+λCb)(T−t) < 0, (A.42)

∂

∂λCb
wt,CAsk = λCs

(λCs + λCb)2

(
1− [1 + (λCs + λCb) (T − t)] e−(λCs+λCb)(T−t)

)
> 0, (A.43)

where the signs of (A.40) and (A.43) follow from the fact that 1 − (1 + x) e−x > 0 for all
x > 0. Similarly, the effects of the offsetting put buy and sell order arrival rates on the put
weights are obtained immediately by substituting “put” for “call” in (A.40)–(A.43) as they
have the same forms in (17)–(20), which yields

∂

∂λPs
wt,PBid > 0, ∂

∂λPs
wt,PAsk < 0, ∂

∂λPb
wt,PBid < 0, ∂

∂λPb
wt,PAsk > 0. (A.44)

Hence, property (i) that the call and put bid and ask prices are decreasing in their
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offsetting sell order arrival rates, while they are increasing in their offsetting buy order
arrival rates follows by substituting (A.40)–(A.43) into

∂

∂λCs
CBid
t = −

[
CBS
t (αφ)− CBS

t (φ)
] ∂

∂λCs
wt,CBid < 0,

∂

∂λCs
CAsk
t =

[
CBS
t (αφ)− CBS

t (φ)
] ∂

∂λCs
wt,CAsk < 0,

∂

∂λCb
CBid
t = −

[
CBS
t (αφ)− CBS

t (φ)
] ∂

∂λCb
wt,CBid > 0,

∂

∂λCb
CAsk
t =

[
CBS
t (αφ)− CBS

t (φ)
] ∂

∂λCb
wt,CAsk > 0,

and the respective inequalities in (A.44) into

∂

∂λPs
PBid
t = −

[
PBS
t (φ)− PBS

t (αφ)
] ∂

∂λPs
wt,PBid < 0,

∂

∂λPs
PAsk
t =

[
PBS
t (φ)− PBS

t (αφ)
] ∂

∂λPs
wt,PAsk < 0,

∂

∂λPb
PBid
t = −

[
PBS
t (φ)− PBS

t (αφ)
] ∂

∂λPb
wt,PBid > 0,

∂

∂λPb
PAsk
t =

[
PBS
t (φ)− PBS

t (αφ)
] ∂

∂λPb
wt,PAsk > 0.

Property (ii) that both the call and put bid-ask spreads are decreasing in the offsetting
order arrival rates follows immediately from differentiating the call and put bid-ask spreads
(A.37)–(A.38) with respect to the arrival rates and obtain

∂

∂λCs

(
CAsk
t − CBid

t

)
= −

[
CBS
t (αφ)− CBS

t (φ)
]

(T − t) e−(λCs+λCb)(T−t) < 0,

∂

∂λCb

(
CAsk
t − CBid

t

)
= −

[
CBS
t (αφ)− CBS

t (φ)
]

(T − t) e−(λCs+λCb)(T−t) < 0,

∂

∂λPs

(
PAsk
t − PBid

t

)
= −

[
PBS
t (φ)− PBS

t (αφ)
]

(T − t) e−(λP s+λP b)(T−t) < 0,

∂

∂λPb

(
PAsk
t − PBid

t

)
= −

[
PBS
t (φ)− PBS

t (αφ)
]

(T − t) e−(λP s+λP b)(T−t) < 0.

Property (iii) that the effects of the shorting fee on the call and put bid-ask spreads are
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decreasing in the offsetting order arrival rates follows immediately from differentiating the
call bid-ask spreads (A.37)–(A.38) with respect to the arrival rates after substituting the
fact

wt,CAsk + wt,CBid − 1 = e−(λCs+λCb)(T−t),

and obtain

∂

∂λCs

∂

∂φ

(
CAsk
t − CBid

t

)
= − (T − t) ∂

∂φ

(
CAsk
t − CBid

t

)
,

∂

∂λCb

∂

∂φ

(
CAsk
t − CBid

t

)
= − (T − t) ∂

∂φ

(
CAsk
t − CBid

t

)
,

∂

∂λPs

∂

∂φ

(
PAsk
t − PBid

t

)
= − (T − t) ∂

∂φ

(
PAsk
t − PBid

t

)
,

∂

∂λPb

∂

∂φ

(
PAsk
t − PBid

t

)
= − (T − t) ∂

∂φ

(
PAsk
t − PBid

t

)
.

Going through similar steps also gives the property that the effects of the partial lending on
the call and put bid-ask spreads are decreasing in the offsetting order arrival rates.

Proof of Proposition 6. Property (i) that the call bid and ask prices of banned stocks are
lower, while the put bid and ask prices of banned stocks are higher than those of unbanned
stocks follows by comparing the call bid and ask prices of banned stocks

CBid
t,Ban = (1− wt,CBid)CBS

t (αφ) + wt,CBidCBS
t (2φ) , (A.45)

CAsk
t,Ban = wt,CAskCBS

t (αφ) + (1− wt,CAsk)CBS
t (2φ) , (A.46)

and the put bid and ask prices of banned stocks

PBid
t,Ban = (1− wt,PBid)PBS

t (2φ) + wt,PBidPBS
t (αφ) , (A.47)

PAsk
t,Ban = wt,PAskPBS

t (2φ) + (1− wt,PAsk)PBS
t (αφ) , (A.48)

with the call and put bid and ask prices of unbanned stocks in (13)–(16) along with the facts
that CBS

t (2φ) < CBS
t (φ) and PBS

t (φ) < PBS
t (2φ).

Property (ii) that both the call and put bid-ask spreads of banned stocks are higher than
those of unbanned stocks follows immediately by comparing the option prices of banned
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stocks (A.45)–(A.48) with those of unbanned stocks (13)–(16) along with the facts that
CBS
t (2φ) < CBS

t (φ) and PBS
t (φ) < PBS

t (2φ).

Property (iii) that the implied stock bid and ask prices of banned stocks are lower than
those of unbanned stocks follows immediately from the definitions of implied stock prices
(21)–(22) along with property (i) that the call bid and ask prices of banned stocks are lower,
while the put bid and ask prices of banned stocks are higher than those of unbanned stocks.

Property (iv) that the call bid price decreases more than the ask price, while the put ask
price increases more than the bid price of banned stocks follows by observing this property

CBid
t,Ban − CBid

t < CAsk
t,Ban − CAsk

t ,

PBid
t,Ban − PBid

t < PAsk
t,Ban − PAsk

t ,

being equivalent to property (ii) that both the call and put bid-ask spreads of banned stocks
are higher than those of unbanned stocks, after rearranging.

Appendix B: Additional Quantitative Analysis

In this Appendix, we provide additional tables to demonstrate further the quantitative effects
of short-selling costs. In particular, Table 4 provides the upper and lower no-arbitrage bounds
and their percentage deviations from the Black-Scholes prices for call and put options for
the parameter values presented in Table 1. The last column gives the relative no-arbitrage
range as it presents the ratio of the range to mid-points of the upper and lower bounds.
Tables 5 and 6 provide the quantitative effects of costly short-selling as in Table 2, but for a
shorter and a longer option maturity date of 1.5 and 4.5 months, respectively, while keeping
all other parameter values as in Table 1.
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Panel (a): Call option
Shorting Option BS Lower Upper No-arbitrage
fee decile moneyness price bound bound range

K

St
CBS
t Ct (φ) Ct (αφ) Ct (αφ)− Ct (φ)

D1 1.10 1.43 1.43 -0.04% 1.43 0.00% 0.00 0.04%
D10 1.43 1.24 -13.45% 1.39 -2.94% 0.15 11.44%
D1 1.00 2.63 2.63 -0.03% 2.63 0.00% 0.00 0.03%
D10 2.63 2.34 -11.22% 2.57 -2.43% 0.23 9.43%
D1 0.90 4.46 4.46 -0.03% 4.46 0.00% 0.00 0.03%
D10 4.46 4.06 -9.06% 4.38 -1.94% 0.32 7.53%

Panel (b): Put option
K

St
PBS
t Pt (αφ) Pt (φ) Pt (φ)− Pt (αφ)

D1 1.10 4.49 4.49 0.00% 4.49 0.02% 0.00 0.02%
D10 4.49 4.56 1.68% 4.85 8.10% 0.29 6.12%
D1 1.00 2.49 2.49 0.00% 2.49 0.03% 0.00 0.03%
D10 2.49 2.54 2.14% 2.75 10.46% 0.21 7.83%
D1 0.90 1.11 1.11 0.00% 1.11 0.04% 0.00 0.04%
D10 1.11 1.14 2.75% 1.26 13.60% 0.12 10.03%

Table 4: No-arbitrage bounds for option prices. This table reports the no-arbitrage upper
and lower bounds and their percentage deviations from the Black-Scholes prices for a call option
(Panel (a)) and a put option (Panel (b)) on a typical stock in the lowest (D1) and the highest
(D10) shorting fee decile in Drechsler and Drechsler (2016) for three different option moneyness
levels. The last column gives the ratio of the no-arbitrage range to mid-points of the upper and
lower bounds. All parameter values are as in Table 1.
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Panel (a): Call option
Shorting Option BS Bid Ask Relative Bid-Ask Relative Implied
fee decile moneyness price price price change spread spread volatility

K

St
CBS
t CBid

t CAsk
t

CMid
t −CBS

t

CBS
t

CAsk
t −CBid

t
CAsk

t −CBid
t

CMid
t

σ̃t,CMid

D1 1.10 0.73 0.73 0.73 -0.02% 0.00 0.01% 40.00%
D10 0.73 0.68 0.69 -6.23% 0.01 2.14% 38.80%
D1 1.00 1.85 1.85 1.85 -0.01% 0.00 0.01% 40.00%
D10 1.85 1.75 1.78 -4.78% 0.03 1.63% 38.05%
D1 0.90 3.84 3.84 3.84 -0.01% 0.00 0.00% 39.99%
D10 3.84 3.68 3.73 -3.47% 0.04 1.17% 35.71%

Panel (b): Put option
K

St
PBS
t PBid

t PAsk
t

PMid
t −PBS

t

PBS
t

PAsk
t −PBid

t
PAsk

t −PBid
t

PMid
t

σ̃t,PMid

D1 1.10 3.87 3.87 3.87 0.01% 0.00 0.00% 40.01%
D10 3.87 3.97 4.01 3.18% 0.04 1.01% 43.17%
D1 1.00 1.78 1.78 1.78 0.01% 0.00 0.01% 40.00%
D10 1.78 1.84 1.87 4.52% 0.03 1.42% 41.78%
D1 0.90 0.55 0.55 0.55 0.02% 0.00 0.01% 40.00%
D10 0.55 0.58 0.60 6.40% 0.01 1.99% 41.10%

Table 5: Quantitative effects of costly short-selling for shorter maturity options. This
table reports the effects of costly short-selling for a shorter maturity (1.5 months) call option (Panel
(a)) and a put option (Panel (b)) on a typical stock in the lowest (D1) and the highest (D10)
shorting fee decile in Drechsler and Drechsler (2016) for three different option moneyness levels.
CMid

t and PMid
t denote the mid-point prices of the call and put, e.g., CMid

t = 0.5(CAsk
t + CBid

t )
and PMid

t = 0.5(PAsk
t + PBid

t ). Implied volatilities in the last columns are obtained by employing
the standard approach of inverting the Black-Scholes formula using the mid-point option prices as
inputs. All other parameter values are as in Table 1.
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Panel (a): Call option
Shorting Option BS Bid Ask Relative Bid-Ask Relative Implied
fee decile moneyness price price price change spread spread volatility

K

St
CBS
t CBid

t CAsk
t

CMid
t −CBS

t

CBS
t

CAsk
t −CBid

t
CAsk

t −CBid
t

CMid
t

σ̃t,CMid

D1 1.10 2.00 2.00 2.00 -0.03% 0.00 0.01% 39.99%
D10 2.00 1.78 1.84 -9.73% 0.06 3.44% 37.44%
D1 1.00 3.24 3.24 3.24 -0.02% 0.00 0.01% 39.99%
D10 3.24 2.92 3.01 -8.41% 0.09 2.94% 36.50%
D1 0.90 4.98 4.98 4.98 -0.02% 0.00 0.01% 39.99%
D10 4.98 4.57 4.69 -7.09% 0.11 2.46% 34.60%

Panel (b): Put option
K

St
PBS
t PBid

t PAsk
t

PMid
t −PBS

t

PBS
t

PAsk
t −PBid

t
PAsk

t −PBid
t

PMid
t

σ̃t,PMid

D1 1.10 4.99 4.99 4.99 0.02% 0.00 0.01% 40.01%
D10 4.99 5.24 5.34 6.17% 0.10 1.91% 44.00%
D1 1.00 3.02 3.02 3.02 0.02% 0.00 0.01% 40.01%
D10 3.02 3.21 3.29 7.63% 0.08 2.34% 42.96%
D1 0.90 1.57 1.57 1.57 0.02% 0.00 0.01% 40.01%
D10 1.57 1.69 1.74 9.50% 0.05 2.88% 42.23%

Table 6: Quantitative effects of costly short-selling for longer maturity options. This
table reports the effects of costly short-selling for a longer maturity (4.5 months) call option (Panel
(a)) and a put option (Panel (b)) on a typical stock in the lowest (D1) and the highest (D10)
shorting fee decile in Drechsler and Drechsler (2016) for three different option moneyness levels.
CMid

t and PMid
t denote the mid-point prices of the call and put, e.g., CMid

t = 0.5(CAsk
t + CBid

t )
and PMid

t = 0.5(PAsk
t + PBid

t ). Implied volatilities in the last columns are obtained by employing
the standard approach of inverting the Black-Scholes formula using the mid-point option prices as
inputs. All other parameter values are as in Table 1.
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