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1. Introduction 

 Economists have long recognized that the benefit from consuming a particular good often 

depends on the number of consumers who purchase the same good. A common manifestation of 

such a benefit is through indirect network effects, where a larger base of adopters of a primary 

product (i.e., “hardware”) creates a larger market for complementary goods (i.e., “software”), 

which then increases the value of the primary good.2 Such effects can play a major role in the 

demand for, and profitability of, a product when they exist, and can even help determine its 

survival (e.g., HD DVD vs. Blu-ray). Consequently, the ability to identify and accurately 

measure indirect network effects for products in a market is important when assessing that 

market’s current and long-run structure. 

A major branch of recent research in this area uses counts of complementary goods to 

measure the impact of indirect network effects in the gaming industry (see, e.g., Clements and 

Ohashi, 2005; Corts and Lederman, 2009; and Dubé et al., 2010). In contrast, anecdotal evidence 

suggests that the effects of software offerings are heterogeneous across quality levels. For 

instance, Sony’s PlayStation dominated the 5th- and the 6th-generation video game console 

markets, even though Sony was an entrant in the mid-1990s. One reason often quoted for Sony’s 

success is that it had developed a large number of ‘killer’ applications. In the 7th-generation 

console market, Nintendo’s Wii has dominated Microsoft’s Xbox 360 and Sony’s PlayStation 3, 

and critics say that the motion-sensor games played on Wii were the ‘game-changers’ and an 

important reason for Wii’s success (Gaudiosi, 2007). 

 The purpose of this paper is to re-examine the indirect network effects in the home video 

game market, allowing the two sides of the market to have differential effects along the quality 

dimension. We believe that this provides an additional check on the network effects theory while 

also providing updated evidence on the existence and magnitude of these effects. To be specific, 

hardware sales may only increase low-quality software offerings, and it may only be high-quality 

software offerings that impact hardware sales. Therefore, the multiplicative effect, or positive 

feedback loop—often used in the literature as measurement of network effects—is not 

2 In an influential paper, Katz and Shapiro (1995) draw a distinction between direct and indirect 
network effects. Direct network effect refers to “a direct physical effect of the number of 
purchasers on the quality of the product” whereas indirect network effect is characterized by the 
lack of such direct physical effect. They mention that indirect network effects induce positive 
feedback between primary and complementary markets in self-fulfilling equilibria. 
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straightforward when the quality dimension is explicitly taken in account. 

 Our analysis begins with a straightforward extension of the static monopolistic competition 

model used by Chou and Shy (1990) and Church and Gandal (1992, 1993) to include vertically 

differentiated complementary goods. We then derive the marginal effect of installed base on the 

supply of games as well as the marginal utility of software availability, where the indirect 

network effect is defined as the product of these two effects across the quality dimension. The 

static model we analyze serves as a relatively simple template to illustrate the importance of 

accounting for vertically differentiated software in identifying indirect network effects.  However, 

the basic insights we highlight are not dependent on a static assumption, and thus can apply to 

dynamic models as well (e.g., Derdenger 2012, Lee 2013)3.   

 We detail market and data conditions that will generate differing measures of indirect 

network effects when allowing for quality-differentiated software versus aggregate counts. 

Specifically, we show that the use of aggregate software counts can mis-measure indirect 

network effects when there is correlation along the quality dimension between the marginal 

utility of software, and either 1) the response of software supply to an increase in installed base, 

or 2) conditional variation in software availability in the data being utilized. Using aggregate 

counts will overestimate indirect network effects when the former correlation is negative, and 

vice versa; and using aggregate counts will underestimate indirect network effects when the 

latter is negative, and vice versa. 

In our data set, we show that both of the above correlations exist and both turn out to be 

negative. However, the direction of mis-measurement using aggregate counts is dominated by 

the latter. In particular, we find that, in the 7th-generation console market, the use of aggregate 

measures underestimates the indirect network effects by approximately 30 percent. In terms of 

the implied percentage increase in market share of a console, we find that using aggregate 

measures underestimates the predicted increase in market share over a two-year period by 

roughly one third. We note that our methodology is general and can be applied to other two-

sided markets. The direction and magnitude of these biases would obviously be specific to the 

data set used by researchers. 

In addition to these primary findings, our results indicating a larger effect for high-quality 

3 The econometric model we ultimately estimate can also serve as a complement to these more 
structural models.  We discuss this further below. 
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software on hardware sales serve to complement dynamic structural papers analyzing this 

industry, e.g., Lee (2013) and Derdenger (2012).  Lee (2013)’s hardware model uses a single 

variable representing the software side, the expected utility of software, which is derived from a 

structural model of game purchases. In the model, high game sales lead to inference of high 

game quality, and high game quality affects expected utility essentially by construction.  In 

contrast, this paper directly analyzes the relationship between hardware sales and game quality. 

In this sense, our estimation results could be seen as a test of whether the specification in these 

structural models is reasonable, and our results indeed support this. 

 We are not the first to consider the effects of quality-differentiated complementary 

products in the home video game industry. Corts and Lederman (2009) define three levels of hit 

games based on dollar sales during the first 12 months after release and use them in their 

hardware demand estimation. However, they allow for this differentiation just to check the 

sensitivity of their estimates to these alternative software measures, so that only one measure is 

used at a time. The difference is that in our analysis, we focus on the differential effects of 

software groups based on game ratings and we also separately identify the effects of increased 

installed base on vertically differentiated software groups in order to find a true estimate of the 

indirect network effects.4 

 There are a number of other studies that examine indirect network effects. For instance, 

Gandal et al. (2000), Nair et al. (2004), and Clements and Ohashi (2005) all measure the 

software variety by counting the total complements available, where the focus is mostly on the 

tradeoff between lowering hardware price and increasing software supply. Prieger and Hu (2012) 

consider exclusive contracts between the platform and software developers and find that there is 

little evidence that exclusivity contributes to hardware demand. Basu et al. (2003) and Gretz 

(2010) show that there are also significant interactions between software availability and 

hardware attributes. 

Finally, another related literature is the literature on platform competition (e.g., Rysman, 

2004; Ackerberg and Gowrisankaran, 2006; and Zhu and Iansiti, 2012), where much of the focus 

4 Binken and Stremersch (2009) use information on game quality ratings to identify ‘superstar’ 
games and estimate their impact on hardware sales. They have not, however, considered the full 
spectrum of game groups or the software provision side. Hogendorn and Yuen (2009) show 
theoretically that the platform that has access to ‘must-have’ components would experience 
higher sales. 
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is on structurally estimating the effect of platform pricing, entry and exit, and exclusive contracts. 

The paper in this literature closest to ours is Rysman (2004) where the amount that consumers 

use a directory increases in the directory’s level of advertising, and the retailer’s willingness-to-

pay for advertising increases in the amount of usage. Our basic framework is similar except in 

our model the two sides of the market interact through quality-differentiated channels. Also, we 

endogenize the number of complementary good producers. 

The outline for the paper is as follows. Section 2 sets forth our theoretical model and its 

predictions. Section 3 discusses data and measurement issues. Section 4 contains the empirical 

methodology, and Section 5 presents the main results. Section 6 provides brief conclusions.  

 

2. Theoretical Model 
In this section we extend the monopolistic competition model used by Chou and Shy (1990) 

and Church and Gandal (1992, 1993) to explicitly incorporate quality-differentiated 

complementary goods, and given the hump-shaped distribution of game titles derive predictions 

regarding the consumer’s marginal utility with respect to each game group as well as the supply 

responses from a unit change in installed base. In our model, we abstract from the hardware 

firm’s profit maximization problem in order to highlight the effects we expect to find and use as 

a guide for our formal estimation. 

Consider a primary goods market (i.e., consoles) with 𝐿 types of complementary products 

(i.e., game titles), where 𝑙 = 1, … , 𝐿 denotes the quality of games in an ascending order. For 

instance, using a continuous quality measure, we can sort game titles into deciles, where 𝐿 

represents the highest decile group. In each quality group, game developers may produce a 

number of different varieties. The console hardware provides no stand-alone benefit. Following 

Dixit and Stiglitz (1977), we model consumer preferences over software variety by adopting a 

CES utility function, 

(1)     𝑢 = 𝜇1𝑙𝑜𝑔�∑ 𝑦1(𝑖)𝛼1𝑁1
𝑖=1 �

1
𝛼1 + ⋯+ 𝜇𝐿𝑙𝑜𝑔�∑ 𝑦𝐿(𝑖)𝛼𝐿𝑁𝐿

𝑖=1 �
1
𝛼𝐿 , 

where 𝑦𝑙(𝑖) is consumption of a game 𝑖 of type 𝑙; 𝑁𝑙 is the number of game varieties of type 𝑙; 

the parameter 𝜇𝑙, where 𝜇1 + ⋯+ 𝜇𝐿 = 1, gives the share of expenditure that a representative 

consumer devotes to type 𝑙 games; and the parameter 𝛼𝑙 ∈ (0,1) measures the degree of 

5 
 



horizontal product differentiation among type 𝑙 products, where a greater 𝛼𝑙 means more 

substitutability or less differentiation. There is a unit measure of consumers who differ only in 

their outside option (non-consumption) value, and we normalize the consumer’s expenditure on 

games to one. 

 It is well known that the above preferences yield demand functions faced by the producer 

of variety 𝑖 of the form, 

 (2)     𝑦𝑙(𝑖) = 𝐴𝑙𝑝𝑙(𝑖)
− 1
1−𝛼𝑙 , 

where 𝑝𝑙(𝑖) is the price of good 𝑖 of type 𝑙, and 𝐴𝑙 is the demand level, 

 (3)    𝐴𝑙 = 𝜇𝑙𝐸

∑ 𝑝𝑙(𝑖)
−

𝛼𝑙
1−𝛼𝑙𝑁𝑙

𝑖=1

, 

where 𝐸 denotes the size of inside consumers (i.e., installed base), each of whom spends one unit 

of income on software. Notice that in a monopolistic competition model the producer of variety 𝑖 

of type 𝑙 treats 𝐴𝑙 as a constant. 

 The production of any variety of type 𝑙 requires a fixed development cost, 𝑘𝑙 > 0, plus a 

constant variable cost, 𝑐 > 0, per unit. It is assumed that the development costs increase with the 

product quality, so that 𝑘1 < ⋯ < 𝑘𝐿. Without serious loss of generality the variable costs are 

the same across types. Developers are required to enter into licensing agreements with console 

manufacturers, and then submit finished games to console manufacturers for approval. Hence, a 

game title is of no use unless it is approved by the console manufacturer. Since complementary 

goods are often tailored to the primary good (due to, e.g., different languages and capacities), 

once the development cost is sunk, this creates a potential holdup problem. 

Following Grossman and Helpman (2002), we assume that, once the development costs are 

sunk, the game developer and the console manufacturer bargain over the split of the joint 

surplus.5 To be more precise, a developer of type 𝑙 game will get a share 𝜔𝑙 ∈ (0,1) of the 

potential sales revenue, 𝑝𝑙(𝑖)𝑦𝑙(𝑖), where 𝜔𝑙 is exogenous. Thus, the complementary share 

5 In the video game market, the console manufacturer may make deals with developers 
specifying a different proportion of sales revenue to be paid to manufacturers as royalties for 
licensing. Special rates may be given to popular developers. 
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(1 − 𝜔𝑙) that accrues to the console manufacturer represents the per-unit royalty rate for type 𝑙 

games. The game developers foresee potential revenue of 𝜔𝑙𝑝𝑙(𝑖)𝑦𝑙(𝑖) from producing 𝑦𝑙(𝑖) 

units, and the profit maximization leads to the following mark-up pricing, 

 (4)     𝑝𝑙(𝑖) = 𝑐
𝜔𝑙𝛼𝑙

. 

Hence, for each type 𝑙 the price of all games is the same in a symmetric equilibrium. Free 

entry ensures zero expected profits for game developers of each type that enter the market, where 

the profits are given by 

(5)     𝜋𝑙(𝑖) = (𝜔𝑙𝑝𝑙(𝑖) − 𝑐)𝑦𝑙(𝑖) − 𝑘𝑙 

                     = (1 − 𝛼𝑙)𝜔𝑙
𝜇𝑙𝐸
𝑁𝑙
− 𝑘𝑙 , 

where the second line uses (2), (3), and (4). Therefore, the equilibrium variety of type 𝑙 games is 

determined by setting 𝜋𝑙(𝑖) equal to zero: 

 (6)     𝑁1∗ = (1−𝛼1)𝜔1𝜇1𝐸
𝑘1

, … ,𝑁𝐿∗ = (1−𝛼𝐿)𝜔𝐿𝜇𝐿𝐸
𝑘𝐿

. 

The model can explain the observed, hump-shaped pattern of software distribution across 

quality dimension. Notice that the development costs, 𝑘𝑙’s, are increasing in the quality of games; 

however, the other parameter values are of importance as well. The degree of product 

differentiation is arguably higher for higher quality games than for lower quality games meaning 

𝛼1 > ⋯ > 𝛼𝐿.6 Also, the share of consumption expenditure may be increasing in the quality 

dimension, which implies 𝜇1 < ⋯ < 𝜇𝐿. The licensing fee payable includes two components: the 

cost of disc production, and a royalty fee. It depends on a combination of projected game pricing 

and sales revenue, and is negotiable. Some anecdotal evidence suggests that it is generally 

around 15 percent across the board.7 

6 With regard to game pricing in (4), this assumption implies that higher quality games are more 
expensive that lower quality games. 
7 New games are typically priced at $60, where the publishers pay a $6-10 licensing fee to 
console manufacturers. (See, e.g., http://latimesblogs.latimes.com/entertainmentnewsbuzz/ 
2010/02/anatomy-of-a-60-dollar-video-game.html). 
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Notice that holding constant other parameter values a larger development cost, 𝑘𝑙, tends to 

decrease the number of software variety. This can reconcile the fact that in our dataset the 

number of top-quality games (e.g., ratings in the range 85+) is smaller than the number of 

middle-quality games (e.g., ratings in the range 60-85). On the other hand, the assumption of 

decreasing 𝛼𝑙 as well as increasing 𝜇𝑙 tends to increase the number of higher quality games. This 

can explain the pattern in our dataset that the number of titles is increasing in quality except at 

the very top levels, where the effect of development costs seems to dominate smaller variations 

in other parameter values.8 Thus, the model can trivially match the observed, hump-shaped 

distribution of game titles, which we take as given. 

In our formal empirical analysis we are interested in estimating the software supply 

response to changes in installed base (i.e., 𝑑𝑁𝑙∗/𝑑𝐸), and the marginal utility from an increase in 

software variety (i.e., 𝑑𝑈/𝑑𝑁𝑙) across the quality dimension. If both effects are significant and 

positive, then it means that there is a positive feedback loop between installed base and software 

availability, and the indirect network effects would be the product of these two across all groups. 

We analyze these two components of indirect network effects in turn. 

 First, from (6) it follows that 𝑁𝑙∗ is a simple linear function of the size of installed base, 𝐸. 

Thus, the impact of a one unit change in installed base on the number of software variety of type 

𝑙 is proportional to the number of software titles themselves. Consequently, if the distribution of 

game titles is hump-shaped across the quality dimension, then we expect that 𝑑𝑁𝑙∗/𝑑𝐸 has also a 

hump-shaped pattern in our estimation, as the effect of development costs 𝑘𝑙 dominates at the 

high end of the distribution. 

Second, let 𝑈 denote the indirect utility of a representative consumer in the symmetric 

equilibrium. Then, the marginal utility with respect to software variety can be written as follows: 

(7)     
𝑑𝑈
𝑑𝑁𝑙

= 𝜇𝑙
𝛼𝑙
𝑙𝑜𝑔((𝑁𝑙∗ + 1)𝑦𝑙(𝑖)𝛼𝑙) −

𝜇𝑙
𝛼𝑙
𝑙𝑜𝑔(𝑁𝑙∗𝑦𝑙(𝑖)𝛼𝑙) 

               = 𝜇𝑙
𝛼𝑙
𝑙𝑜𝑔 𝑁𝑙

∗+1
𝑁𝑙
∗ , 

8 The average development costs for a 7th-generation console game is around $15 million with 
high-end games often costing more than $50 million. (See, e.g., http://www.notenoughshaders. 
com/2012/07/02/the-rise-of-costs-the-fall-of-gaming/). 
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holding constant the demand level 𝐴𝑙 that game developers take as given. 

 Notice that the term in the logarithm is decreasing in 𝑁𝑙∗. Further, the assumptions that 

𝛼1 > ⋯ > 𝛼𝐿 and 𝜇1 < ⋯ < 𝜇𝐿 imply that 𝑑𝑈/𝑑𝑁𝑙 should be increasing in quality if the 

number of varieties in each group 𝑙 were the same. Given that the distribution of 𝑁𝑙 is hump-

shaped, these conditions imply the following: Because the number of high-quality game titles is 

smaller than that of middle-quality titles, the marginal utility of software variety must be higher 

for the top-quality games than that for middle-quality games. On the other hand, because the 

number of middle quality game titles is larger than that of low-quality titles, how the marginal 

utilities compare between low- and middle-quality games is ambiguous because the relative sizes 

of software varieties and the assumptions on 𝛼𝑙’s and 𝜇𝑙’s have offsetting effects. 

 From the above discussions, we can derive the following testable hypotheses: 

 

Prediction 1: Supply response from a one unit change in installed base will be the largest 

in middle-quality groups relative to low- or top-quality groups. 

 

Prediction 2: Marginal utility of a change in software variety will be the highest from top-

quality games relative to middle- or low-quality games. 

 

A couple of points on these predictions are worth mentioning. First, these predictions are 

essentially comparative statics results. As we noted in the Introduction, this approach assumes 

that consumers have short-term adaptive expectation rather than perfect foresight. To be more 

precise, the utility gain from additional software availability in a period would increase the 

consumption value of a console and thus the number of inside consumers in a static equilibrium. 

Once the size of installed base increases, a new equilibrium will be reached in the next period 

with a larger number of software varieties (entries) to satisfy the zero expected profit condition 

in equilibrium. That is, the positive feedback loop in our model is not due to the far-sighted 

rational expectations on the consumers, but rather resembles the traditional tatonnement process. 

As we mentioned earlier, the two expectation assumptions form complementary approaches. 

 Second, while we admit that our model abstracts from a number of potential complications, 

we do not think our predictions are significantly affected by them. For instance, while a game 

can be developed in-house (i.e., when the software developer is employed by the console 
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manufacturer), this would not distort the supply incentives as long as there is no vertical 

exclusion. Also, we did not distinguish console-level software supply from overall supply. In the 

former case, a developed game may only need to be ported to another platform to increase 

supply whereas in the latter, an increase in supply means a game changes from not existing to 

being developed. We believe that as long these multi-homing do not disproportionately occur for 

high-quality games, our main predictions would remain unchanged.9 We support these claims by 

including separate estimation results for exclusive and non-exclusive titles in Section 5. 

 

3. Data 
In our empirical analysis, we focus on the 7th-generation home video game console market 

in the United States. The seventh generation began on November 22, 2005 with the release of 

Microsoft’s Xbox 360 and continued with the release of Sony’s PlayStation 3 on November 11, 

2006 and Nintendo’s Wii on November 19, 2006. We hand-collected weekly console sales data 

from Vgchartz (www.vgchartz.com) and game title availability for each console from Vgchartz 

and a number of gaming publications, including Gamespot and IGN. The aggregate number of 

game titles in our dataset (as of the end of April 2012) is 879 for Xbox 360, 898 for Wii, and 723 

for PlayStation 3. 

We also collected information about console technical specifications and model 

availability from multiple online sources.10 The quality metrics for each game title came from 

Metacritic. Metacritic gives an aggregate score to the majority of games published in the U.S. To 

do so, it weighs review scores from a large number of game publications.11 For our purposes, a 

game’s Metacritic score is taken to be indicative of its quality. Using the scores on Metacritic 

(ranging 0-100), we collected the number of titles in each 5-point range (e.g., 80-84, 85-89, etc.). 

We then constructed the following quality groupings: 90-99, 85-89, 80-84, 75-79, 70-74, 65-69, 

9 The percentage of exclusive titles is relatively low, except for the case of Wii. Exclusives 
compose 20 percent for Xbox 360 titles, 16 percent for PlayStation3 titles, and 49 percent for 
Wii titles. 
10 These includes a wide range of websites, too many to list here. However, references are 
available upon request. 
11 See http://www.metacritic.com/about-metascores for more details on Metascore.  One might 
wonder whether these review scores are simply reflective of critics’ tastes, but Metacritic 
aggregates at least three underlying reviews. Critics’ review scores correlate with sales and are 
gaining more acceptance as an alternative measure of quality in the literature (e.g., Waldfogel, 
2011). 
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60-64, 55-59, 50-54, and < 50.12 

As for console prices, we constructed our console prices by using manufacturer’s price-cut 

announcements, which are public announcements. Most of the existing studies use the data 

originated from the market research firm NPD. Both approaches have pros and cons. If using 

NPD data, then researchers have to construct the average retail price of a console by dividing 

total revenues by quantities sold. For our purposes, this creates some obvious endogeneity 

problem. On the other hand, console manufacturers engage in price discrimination by offering 

multiple versions. For each console, we used the price of the version considered to be the ‘basic’ 

model at the time as the console price. 

The rationale for using the basic model in our approach is that the capability of a console 

mainly depends on its processor (where all calculations are performed) and short-term memory 

(or RAM, which holds all bits of data in place when performing calculations). These are the main 

components that determine the console power, and they are constant across all models. The 

premium models are mainly differentiated with larger hard drive sizes, and bundled games for 

collectors’ versions. Therefore, the console model chosen when constructing our price data does 

not affect the number of current-generation games that can be played on the console. 

We determined the size of the home video gaming market based on the number of 

households with a television in the United States. This information is publicly available each 

year from Nielsen, and we interpolated the yearly numbers across each week of each year. Using 

this information, we constructed the size of the gaming market in any given week as the 

difference in the number of households with a television in the U.S. minus the number of 

households that had purchased a 7th-generation gaming console. This construction implicitly 

assumes that households only purchase one gaming console from a given generation. 

Finally, we used data on the number of competing consoles from Vgchartz, where we 

“exited” the 6th-generation consoles when no more sales data were available. We constructed 

market shares for each console each week. This is done in two ways: 1) calculating the market 

share of each console and the “no purchase” option, and 2) calculating the market share for each 

console among purchases. Both market share calculations will be relevant in our formal 

12 We aggregated data above a score of 90 and below 50, since these were rather obvious cutoffs 
for “very good” and “very bad” games.  Our findings are robust to splitting these groups into 
smaller subgroups. 
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estimation described below. We provide summary statistics for all relevant variables in Table 1. 

As can be seen in the Table, the number of games at each quality level is hump-shaped. 

 

[Table 1 about here] 

 

4. Econometric Specification 
To empirically test the hypotheses specified in Section 2 above, we must specify two 

econometric equations: one for the demand for consoles (hardware), and one for the supply of 

games (software). 

 

4.1. Demand for Consoles 

Our model of demand for consoles follows the discrete-choice literature (e.g., Berry, 

1994; Berry et al., 1995; Nevo, 2000), along with the recent literature analyzing the gaming 

industry (e.g., Clements and Ohashi, 2005; Corts and Ledermand, 2009).  We begin by 

specifying the utility for individual 𝑖 from buying console 𝑗 at time 𝑡 as follows: 

(8)     𝑢𝑖𝑗𝑡 = 𝑥𝑗𝑡𝛽 + 𝛼𝑝𝑗𝑡 + 𝜆1𝑆𝑊1𝑗𝑡 + ⋯+ 𝜆𝐿𝑆𝑊𝐿𝑗𝑡 + 𝜉𝑗𝑡 + 𝜀𝑖𝑗𝑡, 

where 𝑥 contains observable characteristics of the console, 𝑝 is the price of the console, and 𝑆𝑊𝑙 

is the number of software titles at quality level 𝑙. The two error terms represent console-level 

unobserved quality and an idiosyncratic shock to utility, respectively. Notice that this utility 

specification is a simplified version (with respect to software availability) of the utility specified 

in our model in Section 2, and follows the standard specification in the literature13. It also allows 

for simple calculations of marginal utilities, and comparisons to prior analyses. In Section 5, we 

will conduct a simple check of the robustness of our findings to this specification. 

We assume that each consumer chooses the console that maximizes her utility (including 

13 Note that we assume that consumers have period-by-period adaptive expectation rather than 
perfect foresight into the future, as in, e.g., Lee (2013).  While our static approach may fail to 
capture forward-looking behavior, dynamic models typically must make assumptions such as 
perfect foresight, which can be tenuous in industries with disruptive innovations, to circumvent 
the possibility of multiple equilibria. 
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the outside option of no purchase). Following Berry (1994), we define the mean valuation of a 

console across consumers to be 𝛿𝑗𝑡 = 𝑥𝑗𝑡𝛽 + 𝛼𝑝𝑗𝑡 + 𝜆1𝑆𝑊1𝑗𝑡 + ⋯+ 𝜆𝐿𝑆𝑊𝐿𝑗𝑡 + 𝜉𝑗𝑡. As is 

standard, we normalize this mean valuation to zero for the outside option. Following Corts and 

Lederman (2009), we adopt a nested logit framework, where we group all consoles into one nest 

and the outside option into another. This allows for correlation in idiosyncratic tastes (𝜀𝑖𝑗𝑡) 

across consoles, allowing them to be closer substitutes with each other, relative to the outside 

option. 

With these assumptions, Berry (1994) shows the following linear formulation using market 

shares can be derived: 

(9)     𝑙𝑛�𝑠𝑗𝑡� − 𝑙𝑛(𝑠0𝑡) = 𝑥𝑗𝑡𝛽 + 𝛼𝑝𝑗𝑡 + 𝜆1𝑆𝑊1𝑗𝑡 + ⋯+ 𝜆𝐿𝑆𝑊𝐿𝑗𝑡 + 𝜎 𝑙𝑛�𝑠𝑗|𝑔,𝑡� +  𝜉𝑗𝑡, 

where 𝑠𝑗𝑡 is the market share of console 𝑗 at time 𝑡, 𝑠0𝑡 is the market share of the outside option 

at time 𝑡, and 𝑠𝑗|𝑔,𝑡 is the market share of console 𝑗 within group 𝑔 at time 𝑡 (i.e., the market 

share of console 𝑗 among all console purchases at time 𝑡). 

In taking this model to the data, we must address two key issues. The first is choosing the 

components of 𝑥. There is very little variation in the primary console characteristics (e.g., RAM) 

over time for a given generation, so there is little hope in identifying their impact on utility. The 

net effect of such time-invariant characteristics at the console level is captured by our inclusion 

of console fixed effects. In addition, we include a highly flexible function of console age, 

varying at the console level. Specifically, we include a fifth-order polynomial in console age, 

allowing for differing parameters across consoles.14 This set of controls allows for different 

lifetime trends in purchasing for each console, essentially mapping out an “expected diffusion 

process,” ceteris paribus, for each console. Lastly, we include console-level indicator variables 

for the Holiday Season, which equal one during the period of November 20th to December 31st. 

The second issue we must address is potential endogeneity of several of our independent 

variables. Two variables that pose clear endogeneity concerns are price and the inside market 

share. We address these concerns by using standard instrumental variables (IVs), as established 

14 We cannot include a higher-order polynomial without encountering collinearity issues; 
however, there is little difference in our results between a fourth-order and fifth-order 
polynomial. As discussed in Section 5, we also use console-year fixed effects, but these 
(expectedly) result in a poorer fit, and provide similar results. 
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in the literature (e.g., Bresnahan et al., 1997; Gowrisankaran and Stavins, 2004). In particular, we 

instrument using information about competing consoles: number of 6th- and 7th-generation 

competing consoles, sum of competitors’ processor speed, sum of competitors’ memory, sum of 

competitors’ word length, number of competitors of same generation, and number of competing 

consoles from the same manufacturer (i.e., presence of 6th-generation console by the same 

manufacturer).15 As these IVs vary based on entry and exit decisions by all other competing 

consoles, the identifying assumption is that these decisions are not correlated with a given 

console’s unobserved quality level.16 

Other variables that may pose an endogeneity concern include our measures of available 

games (software variety). However, as we discuss below in our software supply model, software 

supply decisions for a game console have a substantial amount of lead time (typically at least one 

year). Consequently, if a console experiences an unobserved quality shock (e.g., a good review 

in a gaming magazine), this shock must persist for a very long time in order to generate a 

correlation between the number of games supplied and unobserved quality. Further, our analysis 

focuses on differential impacts of software titles across the quality dimension, so even if there 

exists some level of positive bias in our estimates, this does not qualitatively affect our findings 

unless the bias substantially differs across quality levels. This is highly unlikely since the largest 

effects we find are for the highest-quality games, which also generally have the longest lead time 

before the game is released. 

 

4.2. Supply of Games 

Following Clements and Ohashi (2005), Corts and Lederman (2009), and Dubé et al. 

(2010), we specify a reduced-form relationship between software supplied for a console and that 

console’s installed base. A key departure in our model is that we distinguish among supply of 

varying quality levels. Consequently, we specify a system of supply equations as follows:  

(10)     𝑆𝑊1𝑗𝑡 = 𝛼1𝑗 + 𝛾1𝐼𝐵𝑗𝑡−104 + 𝜂1𝑗𝑡 

15 Word length refers to the size of basic unit of data used by consoles’ microprocessors. 
16 Corts and Lederman (2009) provide an extensive discussion of this assumption. In short, they 
argue that actual console launch dates are essentially random (due to technological uncertainty), 
so unobserved quality is unlikely to be correlated with exit because exiting consoles are only 
indirect competitors, and any correlation between unobserved quality and entry is likely 
mitigated by console-age controls. 
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             … 

            𝑆𝑊𝐿𝑗𝑡 = 𝛼𝑘𝑗 + 𝛾𝐿𝐼𝐵𝑗𝑡−104 + 𝜂𝐿𝑗𝑡 

Here, 𝛼𝑙𝑗 is a fixed effect for quality level 𝑙 for platform 𝑗, and 𝐼𝐵𝑗𝑡−104 is the size of 

installed base for platform 𝑗 at time 𝑡 − 104. To account for the time it takes to develop a game 

after the production decision has been made, we use the two-year lagged level of installed base, 

i.e., the installed base as of 104 weeks prior to the observed software supply. We also include 

console-year-month dummy variables to flexibly control for console-level technological changes 

in the software industry over time. 

 These equations may suffer from potential endogeneity concerns with respect to the 

installed base. To address this concern, we follow the literature by using the age of the platform 

(and age squared) as an instrument for its installed base. 

 

4.3. Measuring Indirect Network Effects 

 Given the above empirical specifications, we can test whether the two components of 

indirect network effects are working through differing quality channels. Following the literature 

(e.g., Rysman, 2004), we measure indirect network effects as the sum, across the quality 

dimension, of the products of supply response and marginal utilities. We can compare an 

estimate of the indirect network effect using our vertically differentiated model to the one we 

would get using a model where all games are treated equally. The alternative model using simple 

counts would have the following hardware and software equations, respectively: 

(11)   ln�𝑠𝑗𝑡� − ln(𝑠0𝑡) = 𝑥𝑗𝑡𝛽 + 𝛼𝑝𝑗𝑡 + 𝜆𝑆𝑊𝑗𝑡 + 𝜎 ln�𝑠𝑗|𝑔,𝑡� + 𝜉𝑗𝑡 

(12)   𝑆𝑊𝑗𝑡 = 𝛼𝑗 + 𝛾𝐼𝐵𝑗𝑡−104 + 𝜂𝑗𝑡 

Within this model, we can calculate a version of the indirect network effects as the impact 

of a one unit change in installed base (i.e., a change of one million adopters) on the mean utility 

of a console. This is captured by 𝛾 ∗ 𝜆. In contrast, using our vertically differentiated model, the 

impact of a one unit change in installed base is captured by ∑ (𝛾𝑖 ∗ 𝜆𝑖)𝐿
𝑖=1 . 

Why might 𝛾 ∗ 𝜆 ≠ ∑ (𝛾𝑖 ∗ 𝜆𝑖)𝐿
𝑖=1 ? To answer this, we begin by noting the implied 

relationships among these parameters. First, by construction, 𝛾 = ∑ 𝛾𝑖𝐿
𝑖=1 . That is, the marginal 
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effect of installed base on the aggregate total of games is simply the sum of the marginal effects 

of installed base on each mutually exclusive category of games. Next, notice that 𝜆 = ∑ 𝑤𝑖𝜆𝑖𝐿
𝑖=1 , 

where 𝑤𝑖’s are ‘weights’ that sum to one, and whose individual magnitudes depend on the 

relative partial variation of each game quality group in the data, i.e., after controlling for other 

factors, the variance of available games for each quality group within the dataset. In other words, 

the marginal utility of a change in the aggregate number of games is a weighted average of the 

marginal utilities of the game groups, where the weights represent each group’s ability to 

contribute toward identification in the data set. Consequently, 𝛾 ∗ 𝜆 = (∑ 𝛾𝑖𝐿
𝑖=1 )( ∑ 𝑤𝑖𝜆𝑖𝐿

𝑖=1 ) and 

we then ask why might 𝛾 ∗ 𝜆 = (∑ 𝛾𝑖𝐿
𝑖=1 )( ∑ 𝑤𝑖𝜆𝑖𝐿

𝑖=1 ) ≠ ∑ (𝛾𝑖 ∗ 𝜆𝑖)𝐿
𝑖=1 . 

Suppose that the weights are all equal (i.e., they all equal 1/𝐿). Then, comparing the two 

models’ indirect network effect measures simply boils down to determining the correlation 

between 𝛾𝑖 and 𝜆𝑖. If they are positively correlated, using aggregate measures will underestimate 

the true effect, and overestimate the true effect if they are negatively correlated. For instance, if 

high-quality games both generate a higher marginal utility for consoles and have a lower supply 

response to changes in the installed base, then we have negative correlation; hence the use of 

aggregate measures will overstate the true indirect network effect. We illustrate this idea in 

Figures 1 and 2 below. In Figure 1, there is a negative correlation, as described above, and in 

Figure 2, there is a positive correlation between marginal utility and supply response. 
  

[Figures 1 and 2 about here] 

 

Now, consider an alternative scenario where 𝛾𝑖 and 𝜆𝑖 are uncorrelated, but there is 

correlation between 𝑤𝑖 and 𝜆𝑖. In this case, we would have (∑ 𝛾𝑖𝐿
𝑖=1 )(1/L)( ∑ 𝜆𝑖𝐿

𝑖=1 ) = ∑ 𝛾𝑖 ∗𝐿
𝑖=1

𝜆𝑖 , but ( ∑ 𝑤𝑖𝜆𝑖𝐿
𝑖=1 ) ≠ (1/L)∑ 𝜆𝑖𝐿

𝑖=1 . Hence, in contrast to above, if 𝑤𝑖 and 𝜆𝑖 are positively 

correlated, using aggregate measures will overestimate the true effect, and underestimate the true 

effect if they are negatively correlated. For instance, if marginal utility is increasing in game 

quality, but partial variation in available games is declining in game quality, there is a negative 

correlation between 𝜆𝑖 and 𝑤𝑖, implying the use of aggregate measures will underestimate the 

true effect, ceteris paribus. 

In sum, the relationship between measured indirect network effects using aggregate games 
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versus quality-differentiated games will depend on whether correlation along the quality 

dimension exists between the marginal utility of software (𝜆𝑖) and either 1) the response of 

software supply to an increase in installed base (𝛾𝑖), or 2) conditional variation in software 

availability (𝑤𝑖). 

 

5. Results 
According to our hypotheses, we expect to observe the largest coefficient estimates in our 

hardware equation for the highest quality games. However, it is not clear that these games are 

also the most responsive to a console’s installed base. In fact, our prediction in Section 2 was 

that the supply response from a unit change in installed base will be hump-shaped across the 

quality dimension. 

 
5.1. Hardware Results 

 Table 2a contains our IV nested-logit results for console demands, using two different 

standard functional forms for utility with respect to software availability – linear and logarithmic.  

These results are reported in columns (1) and (3). Both sets of results tell us a similar story. 

Specifically, they show that the highest quality games tend to have the highest marginal utilities 

for consumers. In both specifications, we see particularly high coefficient estimates for titles 

ranked above 80. This finding is consistent with prior work (e.g., Binken and Stremersch, 2009), 

which indicates a disproportionate impact on utility from high-quality games.   

 

[Table 2a about here] 

 

In columns (2) and (4) of Table 2 we estimate our model using total counts of game titles, 

in both linear and logarithmic form. In both cases, we get the standard result of a positive effect 

on utility from an increase in total titles available. We will utilize these results for further 

comparison purposes when we discuss the implied indirect network effects in Section 5.3. 

 To test the robustness of these findings, we consider two alternative analyses. First, we 

split our set of game titles into those that are exclusive and those that are non-exclusive, to see if 

the pattern differs between these different types of games. The results are presented in the first 

four columns of Table 2b. Here we see a generally similar pattern for both types compared to our 
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baseline results that combine the two; namely, the highest-quality games have the largest impact 

on hardware demand, and that effect generally diminishes for lower-quality games. We also see 

that changes in aggregate counts have a similar impact on console demand across the two types 

of games. 

Second, we allow for the possibility that games might become obsolete after enough time 

elapses since their release. In columns (5) and (6) of Table 2b, we present our results for the 

baseline model where we no longer count a title after it has reached an age of three years. We 

again observe similar results for the quality-differentiated regression in column (5). Further, our 

result in column (6) using the aggregate counts indicates that the indirect network effects for the 

aggregate titles essentially go to zero.17 Thus, a significant mis-measurement could arise if one 

uses aggregate counts and even a reasonable cutoff. We observe similar qualitative results when 

imposing a cutoff of one year and two years although unsurprisingly the estimates get less 

similar as the cutoff gets shorter. 

 

[Table 2b about here] 

 

 

 

5.2. Software Results 

 Tables 3a and 3b contain our regressions for the supply of game titles as a function of the 

size of the installed base. The first row in each table contains IV results using a two-year lag in 

the installed base, and the second row contains IV results using a one-year lag in the installed 

base.  Lastly, the third row contains results using a two-year lag but without instrumenting.  In all 

specifications, we see notable variation in software supply along the quality dimension, with a 

peak around a quality level of 75. The effect tapers down from this point, and we note that, 

although the effect seems to jump up for titles ranked under 50, this group covers a much wider 

quality range than the others; hence, the effect clearly continues to diminish if we were to 

17 When cutoff thresholds are imposed, there are periods where the number of titles decreased or 
increased very little. Consequently, this pushes the estimate on the aggregate titles to be a 
smaller number. 
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consider similar quality ranges within this group18.     

 

[Tables 3a and 3b about here] 

 

 The last column of Table 3b shows our results when we aggregate all quality levels into a 

total count measure. Here, we see installed base has a positive effect on the overall supply of 

software. 

 We note here that, as with prior studies of the relationship between software supply and 

installed base, it is difficult to completely rule out spurious correlation due to mutual trending 

between installed base and software supply. Hence, our estimates could suffer from a positive 

bias. However, it is less clear that this would be the case when imposing a two-year lag, and our 

results without IVs indicate a bias that is negative when no IVs are used.  Despite the challenge 

of finding ideal IVs, it is reasonable to believe, as our theory predicts and prior studies have 

argued, that there does exist a positive causal effect of installed base on software supply. Further, 

to the extent that our analysis can identify differing relative magnitudes of this effect (implying 

that bias, if there is any, is stable across software quality), our analysis comparing measured 

indirect network effects when one accounts for heterogeneity across quality levels versus when 

one does not is still valid in qualitative and percentage terms, but the level differences may be 

overstated. It is to this comparison that we now turn. 

  

5.3. Indirect Network Effects 

 In this subsection, we compare, quantitatively, the indirect network effect we would find 

using a standard, aggregate measure of software variety to the effect we find using quality-

differentiated measures. To do so, we consider an increase in installed base of one million, which 

is a one unit increase in our model (since we measure this variable in millions). Using aggregate 

measures, this would increase total titles by 19.9062 (using our 2-year lagged model). This 

would then increase mean utility—the dependent variable in our hardware regressions—by 

19.9062 * 0.0129 = 0.2528. If, instead, we allow for differential effects along the quality 

dimension, an increase in installed base of one million will change mean utility by the sum of the 

18 We also run these estimates using instruments in the form of console age interacted with 
console dummies.  We again observe the same general pattern. 

19 
 

                                                           



pair-wise products of its effect on software supply and marginal utility for each quality level. 

This amounts to 0.939 * 0.0536 + … + 2.4687 * 0.0098 = 0.3584. 

Hence, we see that the use of aggregate measures underestimates the true indirect network 

effect on mean utility by approximately 30 percent. Why do we see this underestimation for this 

market when using aggregate measures? As discussed in Section 4.3, there are two factors 

driving this result. The first is the correlation along the quality dimension between the marginal 

utility of software (𝜆𝑖) and the response of software supply to an increase in installed base (𝛾𝑖).  

We graph these two measures in Figure 3 below. While it may appear that these two measures 

are positively correlated in the figure, they are in fact mildly negatively correlated (-0.24).  This 

negative correlation would tend to cause measured indirect network effects using aggregate 

software to be overstated (the opposite of what we find). Therefore, it must be the case that the 

second factor—correlation along the quality dimension between the marginal utility of software 

(𝜆𝑖) and conditional variation in software availability (𝑤𝑖)—is driving our result. While we don’t 

have direct measures for 𝑤𝑖, we can assess whether  𝜆 =  ∑ 𝑤𝑖𝜆𝑖𝐿
𝑖=1  = (1/L) ∑ 𝜆𝑖𝐿

𝑖=1 . From our 

results in Table 2, 𝜆 = 0.0129 and the average of the quality-specific marginal utilities is 0.0201.  

This implies that the impact of higher quality games has relatively less weight due to less overall 

variation in software coming from variation in high-quality games. 

 

[Figure 3 about here] 

 

In sum, our analysis indicates the negative correlation between marginal utility of software 

and partial variation in software availability is the dominant factor behind the underestimation of 

indirect network effects when using aggregate software counts. The direction and magnitudes we 

find using our data may vary for other studies. However, to the extent that there is variation in 

marginal utility of software, and either variation in software supply response to installed base or 

conditional variation in software availability, in a given market and associated data, the issues we 

address here are relevant. 

 

5.4. Impact on Market Shares 

 It is also instructive to interpret the magnitude of this underestimation in indirect network 

effects in terms of market shares. For a given observed market share of a console at a given point 
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in time (𝑠𝑗𝑡), we can ask what is the implied percentage increase in this share when installed base 

increases by one million two years prior (at 𝑡-104). We can then compare this measure for the 

case where we allow for heterogeneous effects along the quality dimension and the case where 

we do not. When we allow for heterogeneous effects, the change to mean utility when installed 

base at 𝑡-104 increases by one million is 0.3584, as calculated above. 

The calculation is done by noting that 𝑠𝑗𝑡′ = exp (ln(𝑠0𝑡′ ) + 𝛿𝑗𝑡 + 0.3584) with the 

increased installed base and 𝑠𝑗𝑡 = exp (ln(𝑠0𝑡) + 𝛿𝑗𝑡) without it, where 𝛿𝑗𝑡 is mean utility with no 

increase in installed base. Since, on average, the share of the outside option is approximately 99 

percent, and an increase in market share of one of the consoles would diminish the share of the 

outside option by far less than one percentage point, 𝑠0𝑡′ /𝑠0𝑡 ≅ 1. Hence, if we assume 𝑠0𝑡′ = 𝑠0𝑡, 

then ln (𝑠𝑗𝑡) − ln (𝑠0𝑡) would increase by 0.3584. It then follows that the market share 𝑠𝑗𝑡 

increases by approximately (𝑒0.3584 − 1), or 43 percent. 

We can compare this to the predicted increase when we do not allow for heterogeneous 

effects. In this case, 𝑠𝑗𝑡 increases by (𝑒0.2528 − 1), or 29 percent. Thus, by not allowing for 

heterogeneous effects, we would underestimate the indirect network effect as it pertains to 

market shares by approximately one third. 

 

6. Conclusion 
 Economists have long noted the importance of network effects in many industries. Existing 

empirical studies have abstracted from the quality dimension of the complementary goods in 

estimating the magnitude of indirect network effects. In this paper, we introduced vertical 

differentiation into the standard monopolistic competition model and examined the implications 

for supply response and marginal utilities. In particular, the use of aggregate software counts can 

mis-measure indirect network effects when there is correlation along the quality dimension 

between the marginal utility of software, and either 1) the response of software supply to an 

increase in installed base, or 2) conditional variation in software availability in the data being 

utilized. In our analysis, we found that using aggregate measures underestimates the indirect 

network effects in the 7th-generation video game console market, implying the latter, negative 

correlation dominates. This approach is applicable to many markets where indirect network 
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effects may be present, and our analysis suggests that accounting for heterogeneity in quality can 

result in economically significant, different measured effects and implications for market shares. 
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Tables 

Table 1 

Summary Statistics 
Variable Mean Std. Dev. Min Max Obs. 

Console share 0.002532 0.003781 0.000209 0.04563 905 
Outside share 0.992475 0.010475 0.903163 0.999659 905 
Console inside 

share 0.371271 0.196686 0.073846 1 905 

Price 314.7966 102.0075 149.99 599.99 905 
Titles 90-99 12.94365 10.36876 0 38 905 
Titles 85-89 23.97901 20.09757 0 67 905 
Titles 80-84 41.94365 29.30338 2 103 905 
Titles 75-79 44.62983 28.79726 3 117 905 
Titles 70-74 46.43425 29.09856 0 104 905 
Titles 65-69 41.14475 28.02259 0 96 905 
Titles 60-64 34.41657 24.06499 0 80 905 
Titles 55-59 28.21326 19.04367 0 64 905 
Titles 50-54 24.45525 16.65602 0 54 905 
Titles <50 45.70276 35.67635 0 114 905 

Console age 
(weeks) 152.3105 88.8662 1 336 905 

Holiday 0.125967 0.331996 0 1 905 
Installed base 16.78098 12.17484 0.15547 43.72277 905 
Installed base 

52wk lag (mil.) 13.66823 10.28382 0.15547 43.72277 749 

Installed base 
104wk lag 

(mil.) 
10.44496 8.033499 0.15547 32.74407 593 

Households 
with TV (mil.) 113.8279 1.640153 109.9945 115.9 905 

# of 
Competitors 3.363536 0.690803 3 5 905 

Sum 
competitors’ 
processing 

speed 

9894.24 4259.831 1518 15368 905 

Sum 
competitors’ 

memory 
761.3116 247.5779 143 1167 905 

Sum 
competitors’ 
word length 

200.7337 41.37922 160 288 905 

# competitors 
from same 
generation 

1.885083 0.463309 0 2 905 

# competitors 
from same 

manufacturer 
0.492818 0.500225 0 1 905 
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Table 2a19 

Hardware IV nested logit results 
Variable (1) (2) (3) (4) 

 Titles in Level Form Titles in Log Form 
Price -0.0045+ 

(0.0025) 
-0.0126** 
(0.0031) 

-0.0023 
(0.0027) 

-0.0086** 
(0.0025) 

Log Inside 
Share 

0.2461+ 
(0.1322) 

0.2496* 
(0.1248) 

0.4944** 
(0.1079) 

0.4463** 
(0.1157) 

Titles 90-99 0.0536** 
(0.0130) 

 0.4108** 
(0.1096) 

 

Titles 85-89 0.0803** 
(0.0181) 

 0.7950** 
(0.2152) 

 

Titles 80-84 0.0299** 
(0.0112) 

 0.5722** 
(0.2213) 

 

Titles 75-79 0.0236** 
(0.0083) 

 -0.0171 
(0.2028) 

 

Titles 70-74 0.0165+ 
(0.0096) 

 -0.3429+ 
(0.1774) 

 

Titles 65-69 -0.0293** 
(0.0082) 

 -0.2985* 
(0.1374) 

 

Titles 60-64 0.0232** 
(0.0089) 

 0.2624+ 
(0.1223) 

 

Titles 55-59 0.0081 
(0.0101) 

 0.2783** 
(0.1024) 

 

Titles 50-54 -0.0147 
(0.0158) 

 -0.0797 
(0.1127) 

 

Titles <50 0.0098 
(0.0075) 

 -0.0343 
(0.1054) 

 

Titles  0.0129** 
(0.0019) 

 0.7379* 
(0.2985) 

R-squared 0.891 0.858 0.884 0.871 
Observations 905 905 905 905 

 

  

19 All regressions include console-level fifth-order polynomial in console age (in weeks), console 
fixed effects, console-level dummy variables for Holiday, and a constant term.  Standard errors 
are robust to arbitrary heteroskedasticity.  Inference results also robust to clustering at the 
console-month level, except for marginal loss of statistical significance for titles ranked 60-64 
and 70-74 in the logged regression (3rd column of results).  ** is significant at 1%, * is 
significant at 5%, and + is significant at 10%.   
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Table 2b20 

Hardware IV nested logit results 
Variable (1) (2) (3) (4) (5) (6) 

 Exclusive Titles Only Non-exclusive Titles Only Titles Dropped after 3 
years 

Price -0.0039* 
(0.0018) 

-0.0121** 
(0.0032) 

-0.0069** 
(0.0022) 

-0.0125** 
(0.0048) 

-0.0107** 
(0.0034) 

-0.0124** 
(0.0031) 

Log Inside 
Share 

0.4947** 
(0.1122) 

0.3253* 
(0.1287) 

0.1448 
(0.1294) 

0.2450 
(0.1798) 

0.1221 
(0.1426) 

0.3420** 
(0.1209) 

Titles 90-99 0.1609** 
(0.0358) 

 0.0835** 
(0.0179) 

 0.0645** 
(0.0147) 

 

Titles 85-89 0.1850** 
(0.0329) 

 0.0510** 
(0.0188) 

 0.0401** 
(0.0149) 

 

Titles 80-84 -0.0284 
(0.0206) 

 0.0226* 
(0.0115) 

 -0.0157 
(0.0126) 

 

Titles 75-79 -0.0522** 
(0.0135) 

 0.0851** 
(0.0105) 

 -0.0156* 
(0.0074) 

 

Titles 70-74 0.0040 
(0.0179) 

 0.0557** 
(0.0128) 

 -0.0017 
(0.0069) 

 

Titles 65-69 -0.0186 
(0.0154) 

 -0.0260* 
(0.0109) 

 -0.0399** 
(0.0089) 

 

Titles 60-64 0.0500** 
(0.0184) 

 0.0121 
(0.0112) 

 0.0084 
(0.0090) 

 

Titles 55-59 -0.0045 
(0.0155) 

 0.0344* 
(0.0134) 

 -0.0044 
(0.0099) 

 

Titles 50-54 0.0134 
(0.0327) 

 -0.0208 
(0.0146) 

 -0.0118 
(0.0127) 

 

Titles <50 0.1015** 
(0.0161) 

 -0.0116 
(0.0085) 

 0.0220** 
(0.0077) 

 

Titles  0.0178** 
(0.0050) 

 0.0196** 
(0.0042) 

 -0.0043 
(0.0026) 

R-squared 0.896 0.857 0.887 0.860 0.859 0.854 
Observations 905 905 905 905 905 905 

 

 

 

 

 

 

  

20 All regressions include console-level fifth-order polynomial in console age (in weeks), console 
fixed effects, console-level dummy variables for Holiday, and a constant term.  Standard errors 
are robust to arbitrary heteroskedasticity.  ** is significant at 1%, * is significant at 5%, and + is 
significant at 10%.   
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Table 3a21 

Software regression results 

 Titles 
90-99 

Titles 
85-89 

Titles 
80-84 

Titles 
75-79 

Titles 
70-74 

Titles 
65-69 

(IV) Installed 
Baset-104 

0.9867** 
(0.1373) 

1.5494** 
(0.1898) 

2.4790** 
(0.2917) 

2.7688** 
(0.3181) 

2.6395** 
(0.2736) 

2.1591** 
(0.2364) 

(IV) Installed 
Baset-52 

0.9390** 
(0.1177) 

1.5389** 
(0.1609) 

2.4944** 
(0.2470) 

2.6793** 
(0.2641) 

2.7564** 
(0.2338) 

2.3249** 
(0.2066) 

(no IV) Installed 
Baset-104 

0.4400** 
(0.0990) 

0.7211** 
(0.1485) 

0.9969** 
(0.1986) 

1.3581** 
(0.2538) 

1.3360** 
(0.2280) 

1.1131** 
(0.1845) 

 

Table 3b 

Software regression results 

 Titles 
60-64 

Titles 
55-59 

Titles 
50-54 

Titles 
< 50 Titles 

(IV) Installed 
Baset-104 

2.0348** 
(0.2257) 

1.7280** 
(0.1815) 

1.0923** 
(0.1425) 

2.4687** 
(0.2856) 

19.9062** 
(1.7747) 

(IV) Installed 
Baset-52 

2.1369** 
(0.2025) 

1.7469** 
(0.1581) 

1.2646** 
(0.1316) 

2.7090** 
(0.2538) 

20.5904** 
(1.4665) 

(no IV) Installed 
Baset-014 

1.1521** 
(0.1899) 

1.0267** 
(0.1869) 

0.6064** 
(0.1227) 

1.2964** 
(0.2577) 

10.0469** 
(1.6396) 

 

 

 

 

 

 

 

 

 

  

21 All regressions include console-year-month fixed effects and a constant term.  Standard errors 
are robust to arbitrary heteroskedasticity.  Standard error estimates change only trivially when 
applying 3SLS to quality groupings (e.g., Titles 90-99, Titles 85-89, and Titles 80-84).  Inference 
results also robust to clustering at the console-month level.  ** is significant at 1%, * is 
significant at 5%, and + is significant at 10%.   
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Figure 1 

Correlation causing overestimation of indirect network effects using an aggregate model 
(with equal weighting of quality groups) 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2 

Correlation causing underestimation of indirect network effects using an aggregate model 
(with equal weighting of quality groups) 
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Figure 3 

Observed pattern of marginal utility and supply response 
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